ЭЛЕКТРОНИКА, РАДИОФИЗИКА, РАДИОТЕХНИКА, ИНФОРМАТИКА
В настоящей работе основные радиационные процессы впервые рассмотрены в рамках континуальной физики, когда движение заряженных частиц происходит в сплошной среде с сопротивлением. При этом вводятся новые характеристики взаимодействия ионов с веществом. В предлагаемом формализме также используются некоторые результаты современной корпускулярной теории. Это позволило использовать физически ясное пространственно-временное описание рассматриваемых процессов и явлений. С высокой степенью точности произведены оценки пробегов ионов в различных материалах, построены профили потерь энергии, рассчитаны длины и времена свободного пробега заряженных частиц в веществе, предложен формализм анализа радиационного изменения физических свойств твердых тел. Впервые детально исследована физическая природа главной характеристики радиационной стойкости материалов – пороговой энергии смещения и получена формула для ее определения.
Исследуется задача построения характеристик различия тестовых последовательностей. Обосновывается ее актуальность для генерирования управляемых вероятностных тестов и сложность нахождения мер отличия для символьных тестов. Показывается ограниченность применения расстояния Хэмминга и Дамерау – Левенштейна для получения меры отличия тестовых наборов. Для произвольного случая определяется новая мера различия двух символьных тестовых наборов на основе интервала, используемого в теории строя цепи последовательных событий. Расстояние D(Ti, Tk) между тестовыми наборами Ti и Tk, использующее характеристику интервала, основано на определении независимых пар одинаковых (тождественных) символов, принадлежащих двум наборам, и вычислении интервалов между ними. Показывается комбинаторный характер вычисления предложенной меры отличия для символьных тестовых наборов произвольного алфавита и размерности. Приводится пример вычисления данной меры и показываются возможные ее модификации и ограничения. Рассматривается применение меры различия для случая многократного тестирования запоминающих устройств на основе адресных последовательностей pA с четным p повторением адресов. Для случая p = 2 приводятся математические соотношения вычисления интервалов и расстояния D(Ti, Tk) для последовательностей адресов 2A, используемых для управляемого вероятностного тестирования запоминающих устройств. Приводятся экспериментальные результаты, подтверждающие эффективность предложенной меры отличия.
The purpose of the article is to present the process of modeling the IoT smart home (SH) network, which combines both user needs and efficiency requirements. The use of Alibaba cloud platform, which reduces complexity and development time, reduces costs, was justified in the project of building the IoT SH network. The structure of this platform is given, its main components are considered and an algorithm for its configuration is given. MQTT is used as an access protocol in the IoT SH network to achieve fast and reliable data transmission. Open source code, reliability, simplicity and other characteristics justify the choice of this data transfer protocol. Modeling of the network IoT SH is based on the knowledge gained in the process of practical implementation. First, the online problems of the system are tested, after the system is able to work after modification and debugging of programs, a street lamp is used as an example to create an instance of an IoT SH network on a cloud platform. The process of creating an example of an IoT SH network is described in detail in steps, in which data from a street lamp is transmitted to a cloud platform, processed there, and then displayed on a mobile device. A mobile phone was used to implement two-way interaction, simulate the sensor of the IoT SH network and display the results. The algorithms for configuring the platform, modeling the sensor and creating an object model of the device of the IoT SH network are given. For some modern control systems, this system is compatible and suitable for a larger number of cases, which contributes to the development of intelligent control in the IoT network.
В работе рассмотрены результаты исследования влияния взаимного расположения влагосодержащих псевдоовальных рассеивающих элементов c линейными размерами 10…20, 2…4, 1…4 и 1…2 мм на значения коэффициентов отражения конструкций экранов электромагнитного излучения, включающих в себя эти элементы, и эффективной поверхности рассеяния наземных объектов, на поверхности которых закреплены или нанесены указанные конструкции. Размещение трех- или двухслойных структур, сформированных на основе псевдоовальных элементов с линейными размерами 2…4, 1…4, 1…2 мм, между двумя монослоями, выполненными на основе элементов с размерами 10…20 мм, приводит к снижению до –17,6 дБ значений коэффициентов отражения в диапазоне частот 2–12 ГГц конструкций экранов электромагнитного излучения, включающих в себя эти элементы. Значения эффективной поверхности рассеяния наземных объектов, на поверхности которых размещены указанные конструкции экранов электромагнитного излучения, варьируются в пределах 0,08…11,80 м2, что свидетельствует о существенном затруднении перехвата информации о местоположении и характеристиках наземных объектов средствами технической разведки в диапазоне частот их функционирования.
ISSN 2708-0382 (Online)