Preview

Doklady BGUIR

Advanced search

Formation of SiC by Vacuum Carbidization on Porous Silicon

https://doi.org/10.35596/1729-7648-2022-20-6-14-22

Abstract

Planar-view TEM investigation revealed the formation of cubic silicon carbide layers on porous silicon by vacuum carbidization. The formation of cubic silicon layers in the form of a two-phase system was found. At the same time, the formed SiC layers on the mesoporous buffer layer are predominantly polycrystalline. Using the Rutherford backscattering method, it was found that the use of buffer layers of porous silicon makes it possible to obtain SiC layers of greater thickness than on a pure silicon substrate under similar conditions of vacuum carbidization. It is shown that an increase in the pore size in porous silicon layers leads to an increase in the thickness of the formed SiC layers. It has been shown by scanning electron microscopy that vacuum carbideization of porous silicon leads to formation of SiC grains in pores, partial overgrowth and sintering of pores. The dependence of the SiC grain size on the pore size was established.

About the Authors

M. V. Labanok
Belarusian State University
Belarus

Labanok M.V., Postgraduate at the Physical Electronics and Nanotechnologies Department

220064, Minsk, Kurchatova St., 5, tel. +375 29 654-09-53



S. L. Prakopyeu
Belarusian State University
Belarus

Prakopyeu S.L., Senior Lecturer at the Physical Electronics and Nanotechnologies Department



S. A. Zavatski
Belarusian State University of Informatics and Radioelectronics
Belarus

Zavatski S.A., Postgraduate at the Micro- and Nanoelectronics Department



V. P. Bondarenko
Belarusian State University of Informatics and Radioelectronics
Belarus

Bondarenko V.P., Cand. of Sci., Associate Professor, Head of Laboratory 4.3 



P. I. Gaiduk
Belarusian State University
Belarus

Gaiduk P.I., Dr. of Sci. (Phys. and Math.), Professor at the Physical Electronics and Nanotechnologies Department



References

1. Ferro G. 3C-SiC Heteroepitaxial Growth on Silicon: The Quest for Holy Grail. Critical Reviews in Solid State and Materials Sciences. 2015;40:56-76. DOI: 10.1080/10408436.2014.940440.

2. Severino A., Locke C., Anzalone R. 3C-SiC Film Growth on Si Substrates. ECS Transactions. 2011;35(6):99. DOI: 10.1149/1.3570851.

3. Skibarko I.A., Milchanin O.V., Gaiduk P.I. Structural and optical properties of GaN/SiC/Si heterostructures grown by MBE. Inst. Phys. Conf. Ser. 1999;166:465-469.

4. Chen J., Steckl A.J. Molecular beam epitaxy growth of SiC on Si (111) from silacyclobutane. J. of Vacuum Science & Technology. B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 1998;16:1305. DOI:10.1116/1.590006.

5. Zimbone M., Mauceri M., Litrico G., Barbagiovanni E.G., Bongiorno C., La Via F. Protrusions reduction in 3C- SiC thin film on Si. J. of Crystal Growth. 2018;498:248-257. DOI: 10.1016/j.jcrysgro.2018.06.003.

6. Bosi M., Ferrari C, Nilsson D, Ward PJ. 3C-SiC carbonization optimization and void reduction on misoriented Si substrates: from a research reactor to a production scale reactor. Cryst. Eng. Comm. 2016;18:7478-7486. DOI: 10.1039/c6ce01388k.

7. Anzalone R., Piluso N., Reitano R., Alberti A., Fiorenza P., Salanitri M., Severino A., Lorenti S., Arena G., Coffa S., La Via F. Voids-free 3C-SiC/Si interface for high quality epitaxial layer. Materials Science Forum. 2016.

8. Shimizu H., Hisada K. Hetero-Epitaxial Growth of 3C-SiC on Carbonized Silicon Substrates. Materials Science Forum. 2003;433-436:229-232. DOI: 10.4028/www.scientific.net/MSF.433-436.229.

9. Chubenko E., Redko S., Dolgiy A., Bandarenka H., Bondarenko V. Porous silicon as substrate for epitaxial films growth. Porous Silicon: From Formation to Applications. Optoelectronics, Microelectronics, and Energy Technology Applications. CRC Press, Taylor and Francis Group. 2016;3:141-162.

10. Booker G.R Crystallographic imperfections in silicon. Disc. Farad. Soc. 1964;38:298-304.

11. Nagornov Yu.S. [Thermodynamics of silicon carbide nucleation during the carbonization of nanoporous silicon]. Technical Physics. 2015;85:5.

12. Tran H.Q., Povetkin A.D., Koltsova E.M., Petukhov D.I., Eliseev A.A. [Mathematical model of mass transfer in the pore based on molecular dynamics using the algorithm of parallel computing]. Technical Sciences. Fundamental research. 2012;3:432-436.

13. Douhi A.L., Klyshko A.A., Bondarenko V.P. [Electrochemical deposition of nickel on macro- and mesoporous silicon]. Doklady BGUIR = Doklady BGUIR. 2009;1(39):65-70.

14. Kidalov V.V., Kukushkin S.A., Osipov A.V, Redkov A.V., Grashchenko A.S., Soshnikov I.P., Boiko M.E., Sharkov M.D., Dyadenchuk A.F. Growth of SiC films by the method of substitution of atoms on porous Si (100) and (111) substrates. Materials Physics and Mechanics. 2018;36:39-52.


Review

For citations:


Labanok M.V., Prakopyeu S.L., Zavatski S.A., Bondarenko V.P., Gaiduk P.I. Formation of SiC by Vacuum Carbidization on Porous Silicon. Doklady BGUIR. 2022;20(6):14-21. (In Russ.) https://doi.org/10.35596/1729-7648-2022-20-6-14-22

Views: 321


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)