Simulation of electron transfer processes in a semiconductor structure using graphene and boron nitride
https://doi.org/10.35596/1729-7648-2020-18-7-71-78
Abstract
About the Authors
V. V. MuravyovRussian Federation
Muravyov V.V., D.Sci, Corr. mem. of the National Academy of Sciences of Belarus, Professor
Minsk
V. N. Mishchenka
Russian Federation
Mishchenka Valery Nickolaevich, PhD, Associate Professor
References
1. Stolyarov M., Liu G., Shur M., Balandin A. Suppression of 1/f in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors. Applied Physics Letters. 2015;107:023106. DOI.org/10.1063/1.4926872.
2. Lee K.H., Shin H.J., Lee J., Lee I.Y., Kim G.H., Choi J.Y., Kim S.W. Large-Scale Synthesis of High-Quality Hexagonal Boron Nitride Nanosheets for Large-Area Graphene Electronics. Nano Letters. 2012;12:714. DOI.org/10.1021/nl203635v.
3. Svintsov D.A, Vyurkov V., Lukichev V.F., Orlikovsky A.A., Burenkov A., Ohsner R. [Tunneling field effect transistors based on graphene]. Phisika i technika polyprovodnikov=Physics and Technology of Semiconductors. 2013;47(2):224-250. DOI: 10.1103/PhysRevB.82.115452. (In Russ.)
4. Serov A. Y., Ong Z.-Y., Fischetti M. V., Pop E. Theoretical analysis of high-field transport in graphene on a substrate. Journal of Applied Physics. 2014;116:034507-1. DOI.org/10.1063/1.4884614.
5. Hockney R., Eastwood J. Numerical simulation using particles. M; 1987.
6. Shur M. [Sovremennye pribory na osnove arsenida gallija]. Moscow: Mir; 1991. (in Russ.)
7. Yamoah M. A., Yang W., Pop E., Goldhaber-Gordon D. High Velosity in Graphene Encapsulated by Hexagonal Boron Nitride. Nano. 2017;11:9914-9919. DOI: 10.1021/acsnano.7b03878.
8. Wang J., Ma F., Sun M. A. Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSA Advances. 2017;7:16801. DOI:10.1039/c7ra00260b.
9. Properties of advanced semiconductor materials: GaN, AiN, InN, BN, SiC, SiGe. Еd. by Levinshtin M.E., Rumyantsev S.L., Shur M.S. New Jork: John Wiley&Sons; 2001.
10. Murav'ev V.V., Mishhenko V.N. [Intensivnosti rasseivanija nositelei zariada v graphene, raspologennom na podlogke iz geksogonalnogo nitrida bora]. Doklady BGUIR = Doklady BGUIR. 2019;7-8(126):141-148. DOI: https://doi.org/10.35596/1729-7648-2019-126-8-141-148. (in Russ.)
11. Murav'ev V.V., Mishhenko V.N. [Opredelenie intensivnostej rasseivanija jelektronov v odinochnom sloe grafena avtorov]. Doklady BGUIR = Doklady BGUIR. 2017;6(108):42-47. (in Russ.)
12. Jyotsna C., Jing G. High-field transport and velocity saturation in graphene. Appl. Phys. Letters. 2009;95:023120. DOI.org/10.1063/1.3182740.
13. Tian F., Aniruddha K., Huili X., Debdeep J. High-field transport in two-dimensional graphene. Physical Review. 2011;B84:125450. DOI: 10.1103/PhysRevB.84.125450.
Review
For citations:
Muravyov V.V., Mishchenka V.N. Simulation of electron transfer processes in a semiconductor structure using graphene and boron nitride. Doklady BGUIR. 2020;18(7):71-78. (In Russ.) https://doi.org/10.35596/1729-7648-2020-18-7-71-78