Mathematical analysis of spectral estimation algorithms resolution
Abstract
The classical methods of evaluating the energy spectra of discretized deterministic and stochastic processes are generally based on the use of procedures that use the fast Fourier transformation (FFT). The classical approach to spectral analysis is effective in respect of computational and provides asymptotically reliable estimates for very extensive classing signals, satisfying the hypothesis of stationary, ergodicity and limits the large sample volume. Limitations of classical spectral estimates especially apparent when analyzing short data records. However, just such a situation is typical for most practical applications, because many processes have measurable short duration or rapidly changing spectra in time.
About the Authors
V. A. Kakora
Belarusian state university of informatics and radioelectronics
Belarus
A. V. Grinkevich
Belarusian state university of informatics and radioelectronics
Belarus
References
1. Ницберг Р.О. Возможности определения спектральной плотности // ТИИЭР. 1979. Т. 67, № 3. С. 120-121.
2. Дженкинс Г., Ваттс Д. Спектральный анализ и его приложения. М.: Мир, 1971. 316 c.
3. Шахтариан Б.И., Ковригин В.А. Методы спектрального оценивания случайных процессов. М.: Гелиос АРВ, 2005. 248 c.
4. Марпл С.Л. Цифровой спектральный анализ и его приложения. М.: Мир, 1990. 584 c.
For citations:
Kakora V.A.,
Grinkevich A.V.
Mathematical analysis of spectral estimation algorithms resolution. Doklady BGUIR. 2017;(3):20-24.
(In Russ.)
Views: 418