Preview

Doklady BGUIR

Advanced search

Avalanche LEDs Based on Nanostructured Silicon for Microwave Frequency Range

https://doi.org/10.35596/1729-7648-2025-23-2-5-11

Abstract

Development of an efficient light signal source is a basic necessity for the development of silicon photonics. Avalanche silicon light emitting diodes (LEDs) can serve as such a source. The article discusses avalanche LEDs based on nanostructured silicon. Measurement of the capacitance of LED structures has shown that when the LED area is reduced to 100 μm2, the total capacitance of the LED and metal wiring is reduced to hundreds of femtofarads, which ensures the functioning of avalanche LEDs in the microwave range. It is shown that the increase in the speed of avalanche LEDs is limited by resistive-capacitive delays, depending on the barrier capacitance of the diode structures. Methods for increasing the speed of avalanche LEDs in both the ultra-high frequency range and the hyper-high frequency range are considered. In particular, by reducing the working area of LEDs to 1 µm2, they are predicted to function over the entire gigahertz frequency range.

About the Authors

S. K. Lazarouk
Belarusian State University of Informatics and Radioelectronics
Belarus

Serguei  К. Lazarouk, Dr. Sci. (Phys. and Math.), Professor, Professor at the Department of Microand Nanoelectronics, Head of the R&D Laboratory “Integrated Microand Nanosystems” (Lab 4.6)

220013, Minsk, P. Brovki St., 6 



A. A. Leshok
Belarusian State University of Informatics and Radioelectronics
Belarus

Andrei A. Leshok, Cand. Sci. (Phys. and Math.), Associate Professor, Head of the Scientific Research Center of Nanoelectronics and Novel Materials

Minsk



A. V. Dolbik
Belarusian State University of Informatics and Radioelectronics
Belarus

Alexander V. Dolbik, Researcher at the Lab 4.6

Minsk



L. P. Tamashevich
Belarusian State University of Informatics and Radioelectronics
Belarus

Leanid P. Tamashevich, Electronics Engineer at the Lab. 4.6

Minsk



A. Y. Klutsky
Belarusian State University of Informatics and Radioelectronics
Belarus

Aleksey Y. Klutsky, Senior Lecturer at the Electronics Department

Minsk



V. V. Dudich
Belarusian State University of Informatics and Radioelectronics
Belarus

Vladislav V. Dudich, Researcher at the Lab 4.6

Minsk



V. A. Labunov
Belarusian State University of Informatics and Radioelectronics
Belarus

Vladimir A. Labunov, Academician at the National Academy of Sciences of Belarus, Dr. Sci. (Tech.), Professor, Scientific Director of the Lab 4.6

Minsk



S. A. Efimenko
JSC “INTEGRAL” – Manager Holding Company “INTEGRAL”
Belarus

Sergey A. Efimenko, Cand. Sci. (Tech.), Chief Designer, Head of the Laboratory

Minsk



N. S. Kovalchuk
JSC “INTEGRAL” – Manager Holding Company “INTEGRAL”
Belarus

Natallia S. Kovalchuk, Cand. Sci. (Tech.), Assosiate Professor, Deputy General Director – Chief Engineer

Minsk



E. P. Kitsyuk
Scientific-Manufacturing Complex “Technological Center”
Russian Federation

Evgeny P. Kitsyuk, Cand. Sci. (Tech.), Head of the R&D Laboratory of Advanced Processes

Moscow



R. M. Ryazanov
Scientific-Manufacturing Complex “Technological Center”
Russian Federation

Roman M. Ryazanov, Engineer

Moscow



A. S. Basaev
Scientific-Manufacturing Complex “Technological Center”
Russian Federation

Alexander S. Basaev, Deputy Director

Moscow



V. V. Svetukhin
Scientific-Manufacturing Complex “Technological Center”
Russian Federation

Vyacheslav V. Svetukhin, Dr. Sci. (Phys. and Math.), Professor, Director

Moscow



References

1. Lazarouk S. K., Leshok A. A., Kozlova T. A., Dolbik A. V., Vi L. D., Ilkov V. K. (2019) 3D Silicon Photonic Structures Based on Avalanche LED with Interconnections Through Optical Interposer. International Journal of Nanoscience. 18 (3–4).

2. Jaguiro P., Katsuba P., Lazarouk S., Moore S., Smirnov A. (2009) Si-Based Optoelectronic Couple. Physica E: Low-Dimensional Systems and Nanostructures. 41 (6), 1094–1096.

3. Lazarouk S., Leshok A., Borisenko V., Mazzoleni C., Pavesi L. (2000) On the Route Towards Si-Based Optical Interconnects. Microelectronic Engineering. 50 (1–4), 81–86.

4. Lazarouk S., Jaguiro P., Borisenko V. (1998) Integrated Optoelectronic Unit Based on Porous Silicon. Physica of Status Solidi (a). 165 (1), 87–90.

5. Lazarouk S. K., Jaguiro P. V., Leshok A. A., Borisenko V. E. (2003) Reverse Biased Porous Silicon Light-Emitting Diodes for Optical Intra-Chip Interconnects. Physica E: Low-Dimensional Systems and Nanostructures. 16 (3–4), 495–498.

6. La Monica S., Maiello G., Ferrari A., Masini G., Lazarouk S., Jaguiro P., et al. (1997) Progress in the Field of Integrated Optoelectronics Based on Porous Silicon. Thin Solid Films. 297 (1–2), 265–267.

7. Balucani M., La Monica S., Lazarouk S., Maiello G., Masini G., Ferrari A. (1997) Silicon Emitting Device Will Knock Down Communication Bottleneck? Solid State Phenomena. 54, 8–12.

8. Yizhou H., QianxiH., Xue Y., Jiamin Y., Chi Z., Ruoyu L., et al. (2025) Triethoxysilane-Derived Silicon Quantum Dots: A Novel Pathway to Small Size and High Crystallinity. Journal of Materials Science & Technology. 219, 59–74.

9. Katsuba P., Jaguiro P., Lazarouk S., Smirnov A. (2009) Stable Electroluminescence of Nanostructured Silicon Embedded into Anodic Alumina. Physica E: Low-Dimensional Systems and Nanostructures. 41, 931–934.

10. Lazarouk S. K., Leshok A. A., Labunov V. A., Borisenko V. E. (2005) Efficiency of Avalanche Light-Emitting Diodes Based on Porous Silicon. Semiconductors. 39 (1), 136–138.

11. Lazarouk S., Bondarenko V., La Monica S., Maello G., Masini G., Pershukevich P., et al. (1996) Electroluminescence from Aluminum-Porous Silicon Reverse Bias Schottky Diodes Formed on the Base of Highly Doped n-Type Polysilicon. Thin Solid Films. 276, 296–298.

12. Lazarouk S., Bondarenko V., Pershukevich P., La Monica S., Maiello G. (1994) Visible Electroluminescence from Al-Porous Silicon Reverse Bias Diodes Formed on the Base of Degenerate n-Type Silicon. MRS Online Proceedings Library Archive. 358, 659–664.

13. Jaguiro P., Katsuba P., Lazarouk S., Smirnov A. (2007) Porous Silicon Avalanche LEDs and Their Applications in Optoelectronics and Information Displays. Acta Physica Polonica A. 112 (5), 1031–1036.

14. Lazarouk S. K., Sasinovich D. A., Katsuba P. S., Labunov V. A., Leshok A. A., Borisenko V. E. (2007) Electroluminescence from Nanostructured Silicon Embedded in Anodic Alumina. Semiconductors. 41 (9), 1109–1112.

15. Lazarouk S., Katsouba S., Tomlinson A., Benedetti S. (2000) Optical Characterization of Reverse Biased Porous Silicon Light Emitting Diode. Materials Science and Engineering. 69–70, 114–117.

16. Buzaneva E., Gorchinsky A., Popova G., Veblaya T., Zankovych S., Boiko Yu., et al. (2000) Photophysical Properties of Nano Si/SiOx Composites in Al/Composite Mono Si Structures for Green Light Emitting and Photodetector-Schottky Diodes. Materials Science in Semiconductor Processing. 3, 529–537.

17. Lazarouk S., Bondarenko V., Jaguiro P., Lacquaniti N., La Monica S., Maiello G., et al. (1996) Electrical Characterization of Visible Emitting Electroluminescent Schottky Diodes Based on n-Type Porous Silicon and on Highly Doped n-Type Porous Polysilicon. Journal of Non-Crystalline Solids. 198–200, 973–976.

18. La Monica S., Balucani M., Lazarouk S., Maiello G., Masini G., Jaguiro P., et al. (1997) Characterization of Porous Silicon Light Emitting Diodes in High Current Density Conditions. Solid State Phenomena. 54, 21–26.

19. Le Dinh Vi, Klutsky A. Yu., Dolbik A. A., Leshok A. A., Lazarouk S. K. (2019) Influence of Anodic Alumina Used as Separating Dielectric of Silicon Avalanche LEDs on Diode Characteristics. Doclady BGUIR. (7–8), 165–172 (in Russian).

20. Chatterjee A., Bhuva B., Schrimpf R. (2024) High-Speed Light Modulation in Avalanche Breakdown Mode for Si Diodes. IEEE Electron Device Letters. 25 (9), 628–630. DOI: 10.1109/LED.2004.834247.

21. Xu K. (2014) Electro-Optical Modulation Processes in Si-PMOSFET LEDs Operating in the Avalanche Light Emission Mode. IEEE Transactions on Electron Devices. 61 (6): 2085–2092. DOI: 10.1109/TED.2014.2318277.

22. Xu K. (2019) Silicon MOS Optoelectronic Micro‐Nano Structure Based on Reverse‐Biased PN Junction. Physica Status Solidi. 216 (7).

23. Ogudo K. A., Snyman L. W., Polleux J.-L., Viana C., Tegegne Z., Schmieder D. (2014) Towards 10–40 GHz on-Chip Micro-Optical Links with all Integrated Si Av LED Optical Sources, Si N Based Waveguides and Si-Ge Detector Technology. Proc. SPIE 8991, Optical Interconnects XIV. 8991, 1–16.

24. Le Dinh Vi, Leshok A. A., Dolbik A. V., Perko S. L., Lazarouk S. K. (2020) Avalanche Leds Based on Nanostructured Silicon for Optical Interconnections. Doklady BGUIR. 18 (3), 63–71.

25. Sze S. M., Pub K. K. Ng. (2006) Physics of Semiconductor Devices. Print ISBN: 9780471143239.

26. Lazarouk S., Xie Z., Chigrinov V., Kwok H. S. (2007) Anodic Nanoporous Titania for Electro-Optical Devices. Japanese Journal of Applied Physics. 46 (7R).

27. Lazarouk S., Leshok A., Dolbik A., Tomashevich L., Klyutsky A., Dudich V., et al. (2024) Development of Avalanche LEDs Based on Nanostructured Silicon for the Gigahertz Frequency Range. Electronic Design Automation Conference 2024 Proceedings. 79–82.

28. Lazarouk S., Dudzich U., Klyutsky A., Dolbik A., Labunov V. (2021) Photosensitive Properties of Avalanche LEDs Based on Nanostructured Silicon. XIX International Workshop on New Approaches to High-Tech: Nano-Design, Technology, Computer Simulations – NDTCS-2021. 79–80.

29. Belous A. I., Kazak N. S. (2022) Strategy for the Development of Belarusian Microelectronics for the Period 2022–2025. Russian Electronics. 16–20.

30. Borisenko V. E. (2014) Nanodimensional Semiconductors and Dielectrics: Achievements of Nanoelectronics and Novel Materials Center of BSUIR. Doklady BGUIR. (2), 5–13 (in Russian).

31. Lazarouk S., Bondarenko V., Borisenko V., Gaponenko N., Gorokh G., Leshok A., et al. (2024)


Review

For citations:


Lazarouk S.K., Leshok A.A., Dolbik A.V., Tamashevich L.P., Klutsky A.Y., Dudich V.V., Labunov V.A., Efimenko S.A., Kovalchuk N.S., Kitsyuk E.P., Ryazanov R.M., Basaev A.S., Svetukhin V.V. Avalanche LEDs Based on Nanostructured Silicon for Microwave Frequency Range. Doklady BGUIR. 2025;23(2):5-11. (In Russ.) https://doi.org/10.35596/1729-7648-2025-23-2-5-11

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)