Circuit Modeling of the Impact of Heavy Charged Particles on Transient Processes in Bipolar Analog Microcircuits
https://doi.org/10.35596/1729-7648-2024-22-5-33-42
Abstract
One of the factors causing the failure of spacecraft integrated circuits is exposure to heavy charged particles. The entry of heavy charged particles into electronic devices leads to the appearance of single event transients (short current pulses), which in analog microcircuits manifest themselves in distortion of the output signal shape, and in digital microcircuits can cause a single event upset. The article discusses a technique for circuit mode-ling of the effect of heavy charged particles on bipolar analog microcircuits, including the developed equivalent electrical circuit of a bipolar transistor for LTSpice and the procedure for modeling transient processes. Despite the simplifications adopted, namely: failure to take into account the dependence of the duration of the rise and fall of the current pulse generated by a charged particle on the parameters of the transistor structure, the assumption that the entire charge is generated in the active base and the space charge regions of the emitter and collector junctions, an equivalent circuit has been developed made it possible to determine that the shape of the collector current pulse for circuit with a common emitter when exposed to a heavy charged particle is determined by the speed of the transistor and its operating mode. Using the developed methodology, the “critical” transistors of the two studied analog microcircuits were determined, and the need to bypass the current-setting resistors with a small capacitor was justified.
About the Authors
O. V. DvornikovBelarus
Dvornikov O. V., Dr. of Sci. (Tech.) Associate Professor, Principal Researcher
Minsk
V. A. Tchekhovski
Belarus
Tchekhovski V. A., Head of the Electronic Methods and Experiment Means Laboratory
Minsk
I. Yu. Lovshenko
Belarus
Lovshenko Ivan Yur’evich, Head of the Research Laboratory “CAD in Micro- and Nanoelectronics” (R&D Lab. 4.4)
220013, , P. Brovki St., 6
Tel.: +375 17 293-88-90
Trong Thanh Nguyen
Belarus
Trong Thanh Nguyen, Postgraduate of Micro- and Nanoelectronics Department
Minsk
References
1. Perez R. (2008) Methods for Spacecraft Avionics Protection Against Space Radiation in the Form of Single-Event Transients. IEEE Transactions on Electromagnetic Compatibility. 50 (3), 455–465. http://dx.doi.org/10.1109/TEMC.2008.927735.
2. Perez R. (2016) Analysis and Simulations of Space Radiation Induced Single Event Transients. 2016 ESA Workshop on Aerospace EMC. 1–6. http://dx.doi.org/10.1109/AeroEMC.2016.7504569.
3. Lovshenko I. Yu., Stempitsky V. R., Shandarovich V. T. (2020) Modeling The Impacts of Heavy Charged Particles on Electrical Characteristics of n-MOSFET Device Structure. Doklady BGUIR. 18 (7), 55–62. http://dx.doi.org/10.35596/1729-7648-2020-18-7-55-62 (in Russian).
4. Wrobel F., Dilillo L., Touboul A. D., Saigné F. (2013) Comparison of the Transient Current Shapes Obtained with the Diffusion Model and the Double Exponential Law – Impact on the SER. 2013 14th European Conference on Radiation and Its Effects on Components and Systems. 1–4. http://dx.doi.org/10.1109/RADECS.2013.6937441.
5. Bennett W. G., Schrimpf R. D., Hooten N. C., Reed R. A., Kauppila J. S., Weller R. A., et al. (2012) Efficient Method for Estimating the Characteristics of Radiation-Induced Current Transients. IEEE Transactions on Nuclear Science. 59 (6), 2704–2709. http://dx.doi.org/10.1109/TNS.2012.2218830.
6. Omprakash A. P., Ildefonso A., Fleetwood Z. E., Tzintzarov G. N., Cardoso A. S., Babcock J. A., et al. (2018) The Effects of Temperature on the Single-Event Transient Response of a High-Voltage (>30 V) Complementary SiGe-on-SOI Technology. IEEE Transactions on Nuclear Science. 66 (1), 389–396. http://dx.doi.org/10.1109/TNS.2018.2886577.
7. Lourenco N. E., Ildefonso A., Tzintzarov G. N., Fleetwood Z. E., Motoki K., Paki P., et al. (2017) Single-Event Upset Mitigation in a Complementary SiGe HBT BiCMOS Technology. IEEE Transactions on Nuclear Science. 65 (1), 231–238. http://dx.doi.org/10.1109/TNS.2017.2778803.
8. López-Calle I., Franco F. J., Agapito J. A., Izquierdo J. G. (2011) Load Resistor as a Worst-Case Parameter to Investigate Single-Event Transients in Analog Electronic Devices. In Proceedings of the 8th Spanish Conference on Electron Devices, CDE’2011. 1–4. http://dx.doi.org/10.1109/SCED.2011.5744202.
9. Cho M. K., Song I., Pavlidis S., Fleetwood Z. E., Buchner S. P., McMorrow D., et al. (2017) An Electrostatic Discharge Protection Circuit Technique for the Mitigation of Single-Event Transients in SiGe BiCMOS Technology. IEEE Transactions on Nuclear Science. 65 (1), 426–431. http://dx.doi.org/10.1109/TNS.2017.2778946.
10. Jung S., Lourenco N. E., Song I., Oakley M. A., England T. D., Arora R., et al. (2014) An Investigation of Single-Event Transients in C-SiGe HBT on SOI Current Mirror Circuits. IEEE Transactions on Nuclear Science. 61 (6), 3193–3200. http://dx.doi.org/10.1109/TNS.2014.2358207.
11. Ding L., Chen W., Wang T., Chen R., Luo Y., Zhang F., et al. (2019) Modeling the Dependence of Single-Event Transients on Strike Location for Circuit-Level Simulation. IEEE Transactions on Nuclear Science. 66 (6), 866–874. http://dx.doi.org/10.1109/TNS.2019.2904716.
12. Seungwoo J., Song I., Fleetwood Z. E., Raghunathan U., Lourenco N. E., Oakley M. A., et al. (2015) The Role of Negative Feedback Effects on Single-Event Transients in SiGe HBT Analog Circuits. IEEE Transactions on Nuclear Science. 62 (6), 2599–2605. http://dx.doi.org/10.1109/TNS.2015.2498540.
13. Jaulent P., Pouget V., Lewis D., Fouillat P. (2007) Study of Single-Event Transients in High-Speed Operational Amplifiers. 2007 9th European Conference on Radiation and Its Effects on Components and Systems. 1974–1981. http://dx.doi.org/10.1109/TNS.2008.920265.
14. Boulghassoul Y., Massengill L. W., Sternberg A. L., Pease R. L., Buchner S., Howard J. W., et al. (2002) Circuit Modeling of the LM124 Operational Amplifier for Analog Single-Event Transient Analysis. IEEE Transactions on Nuclear Science. 49 (6), 3090–3096. http://dx.doi.org/10.1109/TNS.2002.805400.
15. Liu J. (2019) Simulations for Single Event Transient Effects in the LM124 Operational Amplifier. 2019 International Conference on Intelligent Computing, Automation and Systems. 552–555. http://dx.doi.org/10.1109/ICICAS48597.2019.00121.
16. Langalia H., Lad S., Lolge M., Rathod S. (2012) Analysis of Two-Stage CMOS Op-Amp for Single-Event Transients. 2012 International Conference on Communication, Information & Computing Technology. 1–4. http://dx.doi.org/10.1109/ICCICT.2012.6398149.
17. Ildefonso A., Lourenco N. E., Fleetwood Z. E., Wachter M. T., Tzintzarov G. N., Cardoso A. S., et al. (2016) Single-Event Transient Response of Comparator Pre-Amplifiers in a Complementary SiGe Technology. IEEE Transactions on Nuclear Science. 64 (1), 89–96. http://dx.doi.org/10.1109/TNS.2016.2619582.
18. Wang Y., Wang W., Du Y., Cao B. (2013) Modeling and Analysis of Analog Single Event Transients in an Amplifier Circuit. 2013 International Conference on Optoelectronics and Microelectronics. 94–97. http://dx.doi.org/10.1109/ICoOM.2013.6626499.
19. Liu J., Liu Y., Cheng J., En Y., Zhang T., He Y. (2014) Simulations of Single Event Transient Effects in the LM139 Voltage Comparator. 2014 10th International Conference on Reliability, Maintainability and Safety. 189–192. http://dx.doi.org/10.1109/ICRMS.2014.7107167.
20. Dvornikov O. V., Tchekhovsky V. A., Prokopenko N. N., Galkin Ya. D., Kunts A. V., Chumakov V. E. (2022) Radiation-Hardened Components of Semi-Custom Analog Microcircuits. News of Universities. Electronics. 27 (3), 308–321. https://doi.org/10.24151/15615405-2022-27-3-308-321 (in Russian).
21. Galkin Ya. D., Dvornikov O. V., Tchekhovski V. A., Prokopenko N. N. (2023) Circuit Design Modernization of Operational Amplifiers for Increasing Slew Rate of Output Voltage. Doklady BGUIR. 21 (4), 46–53. http://dx.doi.org/10.35596/1729-7648-2023-21-4-46-53 (in Russian).
Review
For citations:
Dvornikov O.V., Tchekhovski V.A., Lovshenko I.Yu., Nguyen T.T. Circuit Modeling of the Impact of Heavy Charged Particles on Transient Processes in Bipolar Analog Microcircuits. Doklady BGUIR. 2024;22(5):33-42. (In Russ.) https://doi.org/10.35596/1729-7648-2024-22-5-33-42