Preview

Doklady BGUIR

Advanced search

Model of Reactive Magnetron Sputtering of a Two-Component Composite Target

https://doi.org/10.35596/1729-7648-2023-21-3-17-25

Abstract

The article proposes a model for predicting the content of metal components of complex oxide films deposited by reactive magnetron sputtering of a two-component composite target in Ar/O2 gas mixture. The model takes into account the sputtering yield and ion-electron emission coefficients of the sputtered metals and their oxides, the distribution of the ion current density on the target, and the rate of the chemical reaction of the formation of oxides of these metals. To verify the proposed model, studies of the elemental composition of titanium-aluminum oxide films deposited by magnetron sputtering of a Ti-Al composite target in Ar and Ar/O2 gas mixture were carried out. It has been established that the model adequately describes the change in the content of metals in the deposited films with a change in the oxygen flow into the chamber. The simulation error does not exceed 10 %, this makes it possible to use the proposed model for predicting the content of metals in a film during reactive sputtering of two-component composite targets.

About the Authors

H. T. Doan
Belarusian State University of Informatics and Radioelectronics
Belarus

Doan H. T., Postgraduate

Minsk



D. A. Golosov
Belarusian State University of Informatics and Radioelectronics
Belarus

Golosov Dmitriy Anatol’evich, Cand. of Sci., Associate Professor, Senior Researcher at the Center of Electronic Technologies andTechnical Diagnosis of Technological Media and Solid State Structures (Center 2.1) of R&D Department

220013, Minsk, P. Brovki St., 6

Tel.: +375 17 293-80-79; E-mail: dmgolosov@mail.ru



Jin Zhang
Xi’an Polytechnic University
China

Jin Zhang, Cand. of Sci., Researcher at the Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test

Xi’an



S. M. Zavadski
Belarusian State University of Informatics and Radioelectronics
Belarus

Zavadski S. M., Cand. of Sci., Associate Professor, Head of the Center 2.1 of R&D Department

Minsk



S. N. Melnikov
Belarusian State University of Informatics and Radioelectronics
Belarus

Melnikov S. N., Cand. of Sci., Senior Researcher at the Center 2.1 of R&D Department

Minsk



T. D. Nguyen
Le Quy Don Technical University
Viet Nam

Nguyen T. D., Cand. of Sci., Lecture

Hanoi



References

1. Robertson J., Wallace R. M. (2015) High-K Materials and Metal Gates for CMOS Applications. Materials Science and Engineering R. (88), 1–41. DOI: 10.1016/j.mser.2014.11.001.

2. Madhuri K. V. (2014) Transition Metal Oxides and their Composite Thin Films. Advanced Research in Engineering Sciences “ARES” Journal. 2 (3), 2–13.

3. Nakano J., Miyazaki H., Kimura T., Goto T., Zhang S. (2004) Thermal Conductivity of Yttria-Stabilized Zirconia Thin Films Prepared by Magnetron Sputtering. J. Ceram. Soc. of Jap. 112, S908–S911. DOI: 10.14852/jcersjsuppl.112.0.S908.0.

4. Golosov D. A., Melnikov S. N., Dostanko A. P. (2012) Calculation of the Elemental Composition of Thin Films Deposited by Magnetron Sputtering of Mosaic Targets. Surface Engineering and Applied Electrochemistry. 48 (1), 52–59.

5. Depla D., Mahieu S. (ed.) (2008) Reactive Sputter Deposition. Springer Publ.

6. Berg S., Blom H. O., Larsson T., Nender C. (1987) Modeling of Reactive Sputtering of Compound Materials. J. Vac. Sci. Technol. A. 5 (2), 202–207. DOI: 10.1116/1.574104.

7. Barankova H., Berg S., Nender C., Carlsson P. (1995) Hysteresis Effects in the Sputtering Process Using Two Reactive Gases. Thin Solid Films.260 (2), 181–186. DOI: 10.1016/0040-6090(94)06501-2.

8. Dreer S., Krismer R., Wilhartitz P. (1999) Multidimensional Optimisation of Process Parameters by Experimental Design for the Deposition of Aluminium and Silicon Oxynitride Films with Predictable Composition. Surface and Coatings Technology. 114 (1), 29–38. DOI: 10.1016/S0257-8972(99)00017-1.

9. Moradi M., Nender C., Berg S., Blom H. O., Belkind A., Orban Z. (1991) Modeling of Multicomponent Reactive Sputtering. J. Vac. Sci. Technol. A. 9 (3), 619–624. DOI: 10.1116/1.577376.

10. Martin N., Rousselot C. (1999) Modelling of Reactive Sputtering Processes Involving Two Separated Metallic Targets. Surface and Coatings Technology. 114 (2–3), 235–249. DOI: 10.1016/S0257-8972(99)00051-1.

11. Laegreid N., Wehner G. K. (1961) Sputtering Yields of Metals for Ar+ and Ne+ Ions with Energies from 50 to 600 eV. J. Appl. Phys. 32 (3), 365–369. DOI: 10.1063/1.1736012.

12. Goeckner M. J., Goree J. A., Sheridan T. E. (1991) Monte Carlo Simulation of Ions in a Magnetron Plasma. IEEE Trans. Plasma. Sci. 19 (2), 301–308. DOI: 10.1109/27.106828.


Review

For citations:


Doan H.T., Golosov D.A., Zhang J., Zavadski S.M., Melnikov S.N., Nguyen T.D. Model of Reactive Magnetron Sputtering of a Two-Component Composite Target. Doklady BGUIR. 2023;21(3):17-25. (In Russ.) https://doi.org/10.35596/1729-7648-2023-21-3-17-25

Views: 331


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)