Model of Reactive Magnetron Sputtering of a Two-Component Composite Target
https://doi.org/10.35596/1729-7648-2023-21-3-17-25
Abstract
The article proposes a model for predicting the content of metal components of complex oxide films deposited by reactive magnetron sputtering of a two-component composite target in Ar/O2 gas mixture. The model takes into account the sputtering yield and ion-electron emission coefficients of the sputtered metals and their oxides, the distribution of the ion current density on the target, and the rate of the chemical reaction of the formation of oxides of these metals. To verify the proposed model, studies of the elemental composition of titanium-aluminum oxide films deposited by magnetron sputtering of a Ti-Al composite target in Ar and Ar/O2 gas mixture were carried out. It has been established that the model adequately describes the change in the content of metals in the deposited films with a change in the oxygen flow into the chamber. The simulation error does not exceed 10 %, this makes it possible to use the proposed model for predicting the content of metals in a film during reactive sputtering of two-component composite targets.
Keywords
About the Authors
H. T. DoanBelarus
Doan H. T., Postgraduate
Minsk
D. A. Golosov
Belarus
Golosov Dmitriy Anatol’evich, Cand. of Sci., Associate Professor, Senior Researcher at the Center of Electronic Technologies andTechnical Diagnosis of Technological Media and Solid State Structures (Center 2.1) of R&D Department
220013, Minsk, P. Brovki St., 6
Tel.: +375 17 293-80-79; E-mail: dmgolosov@mail.ru
Jin Zhang
China
Jin Zhang, Cand. of Sci., Researcher at the Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test
Xi’an
S. M. Zavadski
Belarus
Zavadski S. M., Cand. of Sci., Associate Professor, Head of the Center 2.1 of R&D Department
Minsk
S. N. Melnikov
Belarus
Melnikov S. N., Cand. of Sci., Senior Researcher at the Center 2.1 of R&D Department
Minsk
T. D. Nguyen
Viet Nam
Nguyen T. D., Cand. of Sci., Lecture
Hanoi
References
1. Robertson J., Wallace R. M. (2015) High-K Materials and Metal Gates for CMOS Applications. Materials Science and Engineering R. (88), 1–41. DOI: 10.1016/j.mser.2014.11.001.
2. Madhuri K. V. (2014) Transition Metal Oxides and their Composite Thin Films. Advanced Research in Engineering Sciences “ARES” Journal. 2 (3), 2–13.
3. Nakano J., Miyazaki H., Kimura T., Goto T., Zhang S. (2004) Thermal Conductivity of Yttria-Stabilized Zirconia Thin Films Prepared by Magnetron Sputtering. J. Ceram. Soc. of Jap. 112, S908–S911. DOI: 10.14852/jcersjsuppl.112.0.S908.0.
4. Golosov D. A., Melnikov S. N., Dostanko A. P. (2012) Calculation of the Elemental Composition of Thin Films Deposited by Magnetron Sputtering of Mosaic Targets. Surface Engineering and Applied Electrochemistry. 48 (1), 52–59.
5. Depla D., Mahieu S. (ed.) (2008) Reactive Sputter Deposition. Springer Publ.
6. Berg S., Blom H. O., Larsson T., Nender C. (1987) Modeling of Reactive Sputtering of Compound Materials. J. Vac. Sci. Technol. A. 5 (2), 202–207. DOI: 10.1116/1.574104.
7. Barankova H., Berg S., Nender C., Carlsson P. (1995) Hysteresis Effects in the Sputtering Process Using Two Reactive Gases. Thin Solid Films.260 (2), 181–186. DOI: 10.1016/0040-6090(94)06501-2.
8. Dreer S., Krismer R., Wilhartitz P. (1999) Multidimensional Optimisation of Process Parameters by Experimental Design for the Deposition of Aluminium and Silicon Oxynitride Films with Predictable Composition. Surface and Coatings Technology. 114 (1), 29–38. DOI: 10.1016/S0257-8972(99)00017-1.
9. Moradi M., Nender C., Berg S., Blom H. O., Belkind A., Orban Z. (1991) Modeling of Multicomponent Reactive Sputtering. J. Vac. Sci. Technol. A. 9 (3), 619–624. DOI: 10.1116/1.577376.
10. Martin N., Rousselot C. (1999) Modelling of Reactive Sputtering Processes Involving Two Separated Metallic Targets. Surface and Coatings Technology. 114 (2–3), 235–249. DOI: 10.1016/S0257-8972(99)00051-1.
11. Laegreid N., Wehner G. K. (1961) Sputtering Yields of Metals for Ar+ and Ne+ Ions with Energies from 50 to 600 eV. J. Appl. Phys. 32 (3), 365–369. DOI: 10.1063/1.1736012.
12. Goeckner M. J., Goree J. A., Sheridan T. E. (1991) Monte Carlo Simulation of Ions in a Magnetron Plasma. IEEE Trans. Plasma. Sci. 19 (2), 301–308. DOI: 10.1109/27.106828.
Review
For citations:
Doan H.T., Golosov D.A., Zhang J., Zavadski S.M., Melnikov S.N., Nguyen T.D. Model of Reactive Magnetron Sputtering of a Two-Component Composite Target. Doklady BGUIR. 2023;21(3):17-25. (In Russ.) https://doi.org/10.35596/1729-7648-2023-21-3-17-25