Effect of Rapid Thermal Annealing Temperature on the Electrophysical Properties of the Ohmic Contact of Ti/Al/Ni Metallization to the GaN/AlGaN Heterostructure
https://doi.org/10.35596/1729-7648-2022-20-3-13-19
Abstract
Effect of rapid thermal annealing temperature on the electrophysical properties of the ohmic contact of Ti/Al/Ni metallization with layer thicknesses of 20/120/40 nm to the GaN/AlGaN heterostructure with a two-dimensional electron gas on a sapphire substrate has been discovered by transmission line measurement and secondary ion mass spectroscopy methods. Rapid thermal annealing of the samples was carried out in a nitrogen atmosphere at the temperature ranging from 850 to 900 °C for 60 s. It has been discovered that a high-resistance heterostructure layer with a thickness of about 25 nm is located on the initial samples between metallization and the two-dimensional electron gas, which prevents the formation of ohmic contact. After rapid thermal annealing at the temperature of less than 862,5 °C, the metallization components interact with each other and with the heterostructure, which leads to the decrease in the thickness of the high-resistance heterostructure layer to 15–20 nm and to the nonlinearity of the I – V characteristic. At rapid thermal annealing temperatures in the range from 862,5 to 875 °C, the thickness of the high-resistance heterostructure layer decreases to several nanometers due to the interaction of Ti/Al/Ni metallization components with the heterostructure, which promotes the tunneling effect of charge carriers and formation of a high-quality ohmic contact with a resistivity of about 1⸱10–4 Ohm∙cm2 . With an increase of the rapid thermal annealing temperature over 875 °C, the interaction of the metallization and heterostructure components occurs throughout the entire depth, the two-dimensional electron gas degrades, and the I – V characteristic of the contact becomes nonlinear. The results obtained can be used in the technology for creating GaN-based products with a two-dimensional electron gas.
About the Authors
A. D. YunikBelarus
Yunik Andrei Dmitrievich, Leading Engineer of the Branch Laboratory of New Technologies and Materials
220108, Minsk, Korzhenevskogo St., 16, r. 247
tel. +375-29-854-66-51
J. A. Solovjov
Belarus
Solovjov Ja.А., Cand. of Sci., Associate Professor, Deputy Director of the “Transistor” Branch
220108, Minsk, Korzhenevskogo St., 16, r. 247
D. V. Zhyhulin
Belarus
Zhyhulin D.V., Head of the Sector of SC “Belmicroanalysis”
220108, Minsk, Korzhenevskogo St., 16, r. 247
References
1. Liu A.-C., Tu P.-T., Langpoklakpam C., Huang Y.-W., Chang Y.-T., Tzou A.-J., Hsu L.-H., Lin C.-H., Kuo H.-C., Chang E.Y. The evolution of manufacturing technology for gan electronic devices. Micromachines. 2021;12:737. DOI:10.3390/mi12070737.
2. Greco G., Iucolano F., Roccaforte F. Ohmic contacts to Gallium Nitride materials. Applied Surface Science. 2016;383:24-345. DOI:10.1016/j.apsusc.2016.04.016.
3. Placidi M., Pérez-Tomás A., Constant A., Rius G., Mestres N., Millán J. & Godignon P. Effects of cap layer on ohmic Ti/Al contacts to Si+ implanted GaN. Applied Surface Science. 2009;255(12):6057-6060. DOI:10.1016/j.apsusc.2008.12.084.
4. Seo H.-C., Chapman P., Cho H.-I., Lee J.-H. & Kim K. (Kevin). Ti-based nonalloyed Ohmic contacts for Al0.15Ga0.85N∕GaN high electron mobility transistors using regrown n+-GaN by plasma assisted molecular beam epitaxy. Applied Physics Letters. 2008;93(10):102102. DOI:10.1063/1.2979702.
5. Lee H.-S., Lee D. S. & Palacios T. AlGaN/GaN High-Electron-Mobility Transistors Fabricated Through a Au-Free Technology. IEEE Electron Device Letters. 2011;32(5):623-625. DOI:10.1109/led.2011.2114322.
6. Li Y., Ng G.I., Arulkumaran S., Kumar C.M.M., Ang K.S., Anand M. J., Wang, H., Hofstetter R., Ye G. Low-Contact-Resistance Non-Gold Ta/Si/Ti/Al/Ni/Ta Ohmic Contacts on Undoped AlGaN/GaN High-Electron-Mobility Transistors Grown on Silicon. Applied Physics Express. 2013;6(11):116501. DOI:10.7567/apex.6.116501.
7. Greco G., Giannazzo F., Iucolano F., Lo Nigro R. & Roccaforte F. Nanoscale structural and electrical evolution of Ta- and Ti-based contacts on AlGaN/GaN heterostructures. Journal of Applied Physics. 2013;114(8):083717. DOI:10.1063/1.4819400.
8. Schroder, Dieter K. Semiconductor material and device characterizatio. Third Edition. USA: A WileyInterscience Publication; 2006:141-142.
Review
For citations:
Yunik A.D., Solovjov J.A., Zhyhulin D.V. Effect of Rapid Thermal Annealing Temperature on the Electrophysical Properties of the Ohmic Contact of Ti/Al/Ni Metallization to the GaN/AlGaN Heterostructure. Doklady BGUIR. 2022;20(3):13-19. (In Russ.) https://doi.org/10.35596/1729-7648-2022-20-3-13-19