Large Signal Performance of the Gallium Nitride Heterostructure Field-Effect Transistor With a Graphene Heat-Removal System
https://doi.org/10.35596/1729-7648-2022-20-1-40-47
Аннотация
The self-heating effect exerts a considerable influence on the characteristics of high-power electronic and optoelectronic devices based on gallium nitride. An extremely non-uniform distribution of the dissipated power and a rise in the average temperature in the gallium nitride heterostructure field-effect transistor lead to the formation of a hot spot near the conductive channel and result in the degradation of the drain current, power gain and device reliability. The purpose of this work is to design a gallium nitride heterostructure field-effect transistor with an effective graphene heat-removal system and to study using numerical simulation the thermal phenomena specific to it. The object of the research is the device structure formed on sapphire with a grapheme heat-spreading element placed on its top surface and a trench in the passivation layer filled with diamond grown by chemical vapor deposition. The subject of the research is the large signal performance quantities. The simulation results confirm the effectiveness of the heat-removal system integrated into the heterostructure field-effect transistor and leading to the suppression of the self-heating effect and to the improvement of the device performance. The advantage of our concept is that the heat-spreading element is structurally connected with a heat sink and is designed to remove the heat immediately from the maximum temperature area through the trench in which a high thermal conductivity material is deposited. The results of this work can be used by the electronics industry of the Republic of Belarus for developing the hardware components of gallium nitride power electronics.
Об авторах
V. S. VolcheckБеларусь
Volcheck Vladislav Sergeevich - Researcher at the R&D laboratory 4.4 of R&D Department.
220013, Minsk, P. Brovki st., 6, tel. +375-17-293-84-09
V. R. Stempitsky
Беларусь
Cand. of Sci., Associate Professor, Vice Rector for R&D Department.
Minsk
Список литературы
1. Yan Z., Liu G., Khan J.M., Balandin A.A. Graphene Quilts for Thermal Management of High-Power GaN Transistors. Nature Communications. 2012;3:827. DOI: 10.1038/ncomms1828.
2. Hirama K., Taniyasu Y., Kasu M. AlGaN/GaN High-Electron Mobility Transistors with Low Thermal Resistance Grown on Single-Crystal Diamond (111) Substrates by Metalorganic Vapor-Phase Epitaxy. Applied Physics Letters. 2011;98(16):162112. DOI: 10.1063/1.3574531.
3. Sun J., Fatima H., Koudymov A., Chitnis A., Hu X., Wang H.-M., Zhang J., Simin G., Yang J., Asif Khan M. Thermal Management of AlGaN-GaN HFETs on Sapphire Using Flip-Chip Bonding with Epoxy Underfill. IEEE Electron Device Letters. 2003;24(6):375-377. DOI: 10.1109/LED.2003.813362.
4. Pavlidis G., Kim S.H., Abid I., Zegaoui M., Medjdoub F., Graham S. The Effects of AlN and Copper Back Side Deposition on the Performance of Etched Back GaN/Si HEMTs. IEEE Electron Device Letters. 2019;40(7):1060-1063. DOI: 10.1109/LED.2019.2915984.
5. Volcheck V.S., Lovshenko I.Yu., Shandarovich V.T., Dao Dinh Ha. Gallium Nitride High Electron Mobility Transistor with an Effective Graphene-Based Heat Removal System. Doklady BGUIR. 2020;18(3):72-80. DOI: 10.35596/1729-7648-2020-18-3-72-80.
6. Volcheck V.S., Stempitsky V.R. Gallium nitride heterostructure field-effect transistor with a heat-removal system based on a trench in the passivation layer filled by a high thermal conductivity material. Doklady BGUIR 2021;19(6):74-82. DOI: 10.35596/1729-7648-2021-19-6-74-82.
7. Pant B.D., Tandon U.S. Etching of Silicon Nitride in CCl2F2, CHF3, SiF4, and SF6 Reactive Plasma: A Comparative Study. Plasma Chemistry and Plasma Processing. 1999;19(4):545-563. DOI: 10.1023/A:1021886511288.
8. Bland H.A., Thomas E.L.H., Klemencic G.M., Mandal S., Morgan D.J., Papageorgiou A., Jones T.G., Williams O.A. Superconducting Diamond on Silicon Nitride for Device Applications. Scientific Reports. 2019;9:2911. DOI: 10.1038/s41598-019-39707-z.
9. Farahmand M., Garetto C., Bellotti E., Brennan K.F., Goano M., Ghillino E., Ghione G., Albrecht J.D., Ruden P.P. Monte Carlo Simulation of Electron Transport in the III-Nitride Wurtzite Phase Materials System: Binaries and Ternaries. IEEE Transactions on Electron Devices. 2001;48(3):535-542. DOI: 10.1109/16.906448.
10. Wachutka G.K. Rigorous Thermodynamic Treatment of Heat Generation and Conduction in Semiconductor Device Modeling. IEEE Transactions on Computer-Aided Design. 1990;9(11):1141-1149. DOI: 10.1109/43.62751.
11. Dongre B., Carrete J., Mingo N., Madsen G.K.H. Ab Initio Lattice Thermal Conductivity of Bulk and Thin-Film α-Al2O3. MRS Communications. 2018;8(3):1119-1123. DOI: 10.1557/mrc.2018.161.
12. Feng T., Lindsay L., Ruan X. Four-Phonon Scattering Significantly Reduces Intrinsic Thermal Conductivity of Solids. Physical Review B. 2017;96:161201(R). DOI: 10.1103/PhysRevB.96.161201.
13. Stojanovic N., Yun J., Washington E.B.K., Berg J.M., Holtz M.W., Temkin H. Thin-Film Thermal Conductivity Measurement Using Microelectrothermal Test Structures and Finite-Element-Model-Based Data Analysis. Journal of Microelectromechanical Systems. 2007;16(5):1269-1275. DOI: 10.1109/JMEMS.2007.900877.
14. Dao Dinh Ha, Trung Tran Tuan, Volcheck V.S., Stempitsky V.R. Iron-Induced Acceptor Centers in the Gallium Nitride High Electron Mobility Transistor: Thermal Simulation and Analysis. 2019 International Conference on Advanced Technologies for Communications (ATC). 2019:308-312.
15. Balandin A.A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nature Materials. 2011;10:569-581. DOI: 10.1038/NMAT3064.
Рецензия
Для цитирования:
Volcheck V.S., Stempitsky V.R. Large Signal Performance of the Gallium Nitride Heterostructure Field-Effect Transistor With a Graphene Heat-Removal System. Доклады БГУИР. 2022;20(1):40-47. https://doi.org/10.35596/1729-7648-2022-20-1-40-47
For citation:
Volcheck V.S., Stempitsky V.R. Large Signal Performance of the Gallium Nitride Heterostructure Field-Effect Transistor With a Graphene Heat-Removal System. Doklady BGUIR. 2022;20(1):40-47. https://doi.org/10.35596/1729-7648-2022-20-1-40-47