The proton flux influence on electrical characteristics of a dual-channel hemt based on GaAs
https://doi.org/10.35596/1729-7648-2021-19-8-81-86
Abstract
The results of the simulation the influence of the proton flux on the electrical characteristics of the device structure of dual-channel high electron mobility field effect transistor based on GaAs are presented. The dependences of the drain current ID and cut-off voltage on the fluence value and proton energy, as well as on the ambient temperature are shown.
About the Authors
I. Yu. LovshenkoBelarus
Ivan Yur’evich Lovshenko – Head of R&D Lab. “CAD in Micro- and Nanoelectronicsˮ of R&D Department
220013, Republic of Belarus, Minsk, P. Brovka St., 6, Belarusian State University of Informatics and Radioelectronics
A. Yu. Voronov
Belarus
Aleksei Yu. Voronov – Master's student
Minsk
P. S. Roshchenko
Belarus
Polina S. Roshchenko – Master's student, Electronic Engineer at R&D Lab. “CAD in Micro- and Nanoelectronicsˮ of R&D Department
Minsk
R. E. Ternov
Belarus
Roman E. Ternov – Master's student
Minsk
Ya. D. Galkin
Belarus
Yaroslav D. Galkin – Postgraduate student, Electronics Engineer at Electronic Methods and Experiment Means Laboratory
Minsk
A. V. Kunts
Belarus
Alexey V. Kunts – Postgraduate Student, Electronics Engineer at Electronic Methods and Experiment Means Laboratory
Minsk
V. R. Stempitsky
Belarus
Victor R. Stempitsky – PhD., Associate Professor, Vice-Rector of Research and Development, Head of R&D Department, Scientific Supervisor of R&D Lab. “CAD in Micro- and Nanoelectronicsˮ
Minsk
Jinshun Bi
China
Jinshun Bi – Professor
Beijing
References
1. Kulakov V.M., Ladygin E.A., Shahovcov V.I. The effect of penetrating radiation on electronic products. M. : Sov. Radio; 1980. (In Russ.)
2. Allam E.E., Inguimbert C., Meulenberg A., Jorio A., Zorkani I. Gamma non-ionizing energy loss:Comparison with the damage factor in silicon devices. Journal of Applied Physics. 2018;123 (095703):1-5.
3. Silvaco International. Victory Device : User Manual, Santa Clara : Silvaco; 2019.
4. Synopsys Inc. Sentaurus Device : User Guide, Version L-2016.03. San Jose : Synopsys; 2016.
5. Site of the SR-NIEL project [Electronic resource]. – Access mode: http://www.sr-niel.org/index.php.
6. Mansouri E. Studies on Radiation-induced Defects in InP/InAsP Nanowire-based Quantum Disc-in-wire Photodetectors. Halmstad : Halmstad University; 2018.
7. Pons D., Mooney P.M., Bourgoin J.C. Energy Dependence of Deep Level Introduction in Electron Irradiated GaAs. J. Appl. Phys. 1980;51:2038-2042.
8. Allam M.E., Inguimbert C., Nuns T., Meulenberg A., Jorio A., Zorkani I. Gamma and Electron NIEL Dependence of Irradiated GaAs. NSREC. 2016:7.
9. Claeys C., Simoen E. Radiation effects in Advanced Semiconductor Materials and Devices. Berlin: Springer; 2002.
10. Chen N., Gray S., Hernandez-Rivera E., Huang D., LeVan P. D., Gao F.. Computational simulation of threshold displacement energies of GaAs. Journal of Materials Research. 2017; 32(8):1555-1562.
11. Ziegler J.F., Biersack J. P., Littmark U. The Stopping and Range of Ions in Solids. Pergamon; 1985.
Review
For citations:
Lovshenko I.Yu., Voronov A.Yu., Roshchenko P.S., Ternov R.E., Galkin Ya.D., Kunts A.V., Stempitsky V.R., Bi J. The proton flux influence on electrical characteristics of a dual-channel hemt based on GaAs. Doklady BGUIR. 2021;19(8):81-86. https://doi.org/10.35596/1729-7648-2021-19-8-81-86