Numerical simulation of the sensor for toxic nanoparticles based on the heterostructure field effect transistor
https://doi.org/10.35596/1729-7648-2020-18-8-62-68
Abstract
About the Authors
V. S. VolcheckBelarus
Volcheck V.S., Research Assistant of the R&D Laboratory 4.4 “Computer-Aided Design of Microand Nanoelectronic Systems” of R&D Department
220013, Republic of Belarus, Minsk, P. Brovkа str., 6
V. R. Stempitsky
Belarus
Stempitsky V.R., PhD, Associate Professor, Deputy Head of Research and Development Department
Minsk
References
1. Sengul A.B., Asmatulu E. Toxicity of Metal and Metal Oxide Nanoparticles: A Review. Environmental Chemistry Letters. 2020;18:1659-1683. DOI: 10.1007/s10311-020-01033-6.
2. Lekamge S., Miranda A.F., Abraham A., Li V., Shukla R., Bansal V., Nugegoda D. The Toxicity of Silver Nanoparticles (AgNPs) to Three Freshwater Invertebrates with Different Life Strategies: Hydra Vulgaris, Daphnia Carinata, and Paratya Australiensis. Frontiers in Environmental Science. 2018;6(152):1-13. DOI: 10.3389/fenvs.2018.00152.
3. Burello E., Worth A. Predicting Toxicity of Nanoparticles. Nature Nanotechnology. 2011;6:138-139. DOI: 10.1038/nnano.2011.27.
4. Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H.-M., Toropov A., Leszczynska D., Leszczynski J. Using Nano-QSAR to Predict the Cytotoxicity of Metal Oxide Nanoparticles. Nature Nanotechnology. 2011;6:175-178. DOI: 10.1038/nnano.2011.10.
5. Makowski M.S., Kim S., Gaillard M., Janes D., Manfra M.J., Bryan I., Sitar Z., Arellano C., Xie J., Collazo R., Ivanisevic A. Physisorption of Functionalized Gold Nanoparticles on AlGaN/GaN High Electron Mobility Transistors for Sensing Applications. Applied Physics Letters. 2013;074102. DOI: 10.1063/1.4791788.
6. Abdel-Karim R., Reda Y., Abdel-Fattah A. Review–Nanostructured Materials-Based Nanosensors. Journal of The Electrochemical Society. 2020;167:037554. DOI: 10.1149/1945-7111/ab67aa.
7. Wang H.T., Kang B.S., Chancellor T.F., Lele T.P., Tseng Y., Ren F., Pearton S.J., Dabiran A., Osinsky A., Chow P.P. Selective Detection of Hg(II) Ions from Cu(II) and Pb(II) Using AlGaN/GaN High Electron Mobility Transistors. Electrochemical and Solid-State Letters. 2007;10(11):J150-J153. DOI: 10.1149/1.2778997.
8. Vurgaftman I., Meyer J.R., Ram-Mohan L.R. Band Parameters for III-V Compound Semiconductors and Their Alloys. Journal of Applied Physics. 2001;89(11):5815-5875. DOI: 10.1063/1.1368156.
9. Guo Y., Wang X., Miao B., Li Y., Yao W., Xie Y., Li J., Wu D., Pei R. An AuNPs-Functionalized AlGaN/GaN High Electron Mobility Transistor Sensor for Ultra-sensitive Detection of TNT. RSC Advances. 2015;5(120):98724-98729. DOI: 10.1039/C5RA16704C.
10. Dao Dinh Ha, Trung Tran Tuan, Volcheck V., Stempitsky V. Iron-Induced Acceptor Centers in the Gallium Nitride High Electron Mobility Transistor: Thermal Simulation and Analysis. 2019 International Conference on Advanced Technologies for Communications (ATC). 2019:308-312. DOI: 10.1109/ATC.2019.8924506.
Review
For citations:
Volcheck V.S., Stempitsky V.R. Numerical simulation of the sensor for toxic nanoparticles based on the heterostructure field effect transistor. Doklady BGUIR. 2020;18(8):62-68. (In Russ.) https://doi.org/10.35596/1729-7648-2020-18-8-62-68