Preview

Doklady BGUIR

Advanced search

Electronic properties of quasi two-dimensional transition metals chalcogenides with low-dimensional magnetism

https://doi.org/10.35596/1729-7648-2020-18-7-87-95

Abstract

The search for fundamental physical laws which lead to stable high-temperature ferromagnetism is an urgent task. In addition to the already synthesized two-dimensional materials, there remains a wide list of possible structures, the stability of which is predicted theoretically. The article suggests the results of studying the electronic properties of MAX3 (M = Cr, Fe, A = Ge, Si, X = S, Se, Te) transition metals based compounds with nanostructured magnetism. The research was carried out using quantum mechanical simulation in specialized VASP software and calculations within the Heisenberg model. The ground magnetic states of twodimensional MAX3 and the corresponding energy band structures are determined. We found that among the systems under study, CrGeTe3 is a semiconductor nanosized ferromagnet. In addition, one is a semiconductor with a bandgap of 0.35 eV. Other materials are antiferromagnetic. The magnetic moment in MAX3 is localized on the transition metal atoms: in particular, the main one on the d-orbital of the transition metal atom (and only a small part on the p-orbital of the chalcogen). For CrGeTe3, the exchange interaction integral is calculated. The mechanisms of the formation of magnetic order was established. According to the obtained exchange interaction integrals, a strong ferromagnetic order is formed in the semiconductor plane. The distribution of the projection density of electronic states indicates hybridization between the d-orbital of the transition metal atom and the p-orbital of the chalcogen. The study revealed that the exchange interaction by the mechanism of superexchange is more probabilistic.

About the Authors

M. S. Baranava
Belarusian State University of Informatics and Radioelectronics
Russian Federation

Baranava Maryia Sergeevna, Researcher of R&D Lab 4.4

220013,  Minsk, P. Brovki str., 6



P. A. Praskurava
Belarusian State University of Informatics and Radioelectronics
Russian Federation

 P.A., student of Micro- and Nanoelectronics Department

Minsk



References

1. Coey J.M.D. Magnetism and Magnetic Materials. Cambridge University Press; 2010.

2. Gibertini M., Koperski M., Morpurgo A.F., Novoselov K.S. Magnetic 2D materials and heterostructures. Nature Nanotechnology. 2019;14(5):408-419. DOI:10.1038/s41565-019-0438-6.

3. Mermin N.D., Wagner H. Absence of Ferromagnetism or Antiferromagnetism in One- or TwoDimensional Isotropic Heisenberg Models. Physical Review Letters. 1966;17(22):1133-1136. DOI:10.1103/physrevlett.17.1133.

4. Niss M. History of the Lenz-Ising Model 1950–1965: from irrelevance to relevance. Archive for History of Exact Sciences. 2008;63:243-287. DOI:10.1007/s00407-008-0039-5.

5. Zhuang H.L., Kent P.R.C., Hennig R.G. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnetFe3GeTe2. Physical Review B. 2016;93(13). DOI:10.1103/physrevb.93.134407.

6. Liu S., Yuan X., Zou Y., Sheng Y., Huang C., Zhang E., … Xiu F. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. Npj 2D Materials and Applications. 2017;1(1). DOI:10.1038/s41699-017-0033-3.

7. Carteaux V., Ouvrard G., Grenier J.C., Laligant Y. Magnetic structure of the new layered ferromagnetic chromium hexatellurosilicate Cr2Si2Te6. Journal of Magnetism and Magnetic Materials. 1991;94(1,2):127-133. DOI:10.1016/0304-8853(91)90121-p.

8. Li X., Yang J. CrXTe3(X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors. Journal of Materials Chemistry C. 2014;2(34):7071. DOI:10.1039/c4tc01193g.

9. Lee J.U., Lee S., Ryoo J.H., Kang S., Kim T.Y., Kim P., Cheong H. Ising-Type Magnetic Ordering in Atomically Thin FePS3. Nano Letters. 2016;16(12):7433-7438. DOI:10.1021/acs.nanolett.6b03052.

10. Huang B., Clark G., Navarro-Moratalla E., Klein D.R., Cheng R., Seyler K.L., Xu X. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 2017;546(7657):270-273. DOI:10.1038/nature22391.

11. Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Zhang X. Discovery of intrinsic ferromagnetism in twodimensional van der Waals crystals. Nature. 2017;546(7657):265-269. DOI:10.1038/nature22060.

12. Carteaux V., Brunet D., Ouvrard G., Andre G. Сrystallographic, magnetic and electronic structures of new layered ferromagnetic compound Cr2Ge2Te6. Journal of physics. 1995;7(1):69-87.

13. Sun Y., Xiao R.C., Lin G.T., Zhang R.R., Ling L.S., Ma Z.W., Sheng Z.G. Effects of hydrostatic pressure on spin-lattice coupling in two-dimensional ferromagnetic Cr2Ge2Te6. Applied Physics Letters. 2018;112(7):072409. DOI:10.1063/1.5016568.

14. Chittari B.L., Lee D., MacDonald A.H., Hwang E., Jung J. Carrier and strain tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides. Physical Review B. 2020;101.

15. Casto L.D., Clune A.J., Yokosuk M.O., Musfeldt J.L., Williams T.J., Zhuang H.L., Mandrus D. Strong spin-lattice coupling in CrSiTe3. APL Materials. 2015;3(4):041515. DOI:10.1063/1.4914134.

16. Lado J.L., Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Materials. 2017;4(3):035002. DOI:10.1088/2053-1583/aa75ed.

17. Dreizler R., Gross E. Density Functional Theory. New York: Plenum Press; 1995.

18. Kresse G. VASP the guide: tutorial. Austria: University of Vienna; 2003.

19. Das T., Rocquefelte X., Jobic S. Absolute Reference Energy to Realign the Band-edges of Inorganic Semiconductors Using First-principles Calculations. 2020. arXiv:1812.01293.

20. Zhou F., Cococcioni M., Marianetti C.A., Morgan D., Ceder G. First-principles prediction of redox potentials in transition-metal compounds with LDA+U. Physical Review B. 2004;70:235121. DOI:10.1103/PhysRevB.70.235121.


Review

For citations:


Baranava M.S., Praskurava P.A. Electronic properties of quasi two-dimensional transition metals chalcogenides with low-dimensional magnetism. Doklady BGUIR. 2020;18(7):87-95. (In Russ.) https://doi.org/10.35596/1729-7648-2020-18-7-87-95

Views: 542


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)