Gallium nitride high electron mobility transistor with an effective graphene-based heat removal system
https://doi.org/10.35596/1729-7648-2020-18-3-72-80
Abstract
The self-heating effect is a major problem for gallium nitride electronic, optoelectronic and photonic devices. Average temperature increase and non-uniform distribution of dissipated power in the gallium nitride high electron mobility transistor lead to the forming of a hot spot in the vicinity of the conducting channel and to degradation of the drain current, output power and gain, as well as poor reliability. The purpose of this work is to develop the design using numerical simulation and to study the thermal phenomena that occur in the gallium nitride high-electron mobility transistor with a graphene-based heat removal system. The objects of the research are the structures fabricated on sapphire, silicon and silicon carbide substrates. The subject of the research is the electrical, frequency and thermal characteristics of the gallium nitride high-electron mobility transistor with a graphene-based heat removal system. The calculation results show that the integration of a graphene-based heat removal element into the design of the high electron mobility transistor can effectively mitigate the self-heating effect and thus improve the device performance. The advantage of the proposed concept is that the graphene-based heat removal element is structurally connected with a heat sink and aims at removing heat immediately from the maximum temperature region, providing an additional heat escape channel. The obtained results can be used by the electronics industry of the Republic of Belarus for developing the hardware components of gallium nitride power electronics.
About the Authors
V. S. VolcheckBelarus
Vladislav S. Volcheck - research assistant of the R&D laboratory 4.4 of R&D Department of Belarusian State University of Informatics and Radioelectronics.
220013, Minsk, P. Brovki str., 6.
tel. + 375 17 293 84 09
I. Yu. Lovshenko
Belarus
Ivan Yu. Lovshenko - Head of the R&D laboratory 4.4 of R&D Department of Belarusian State University of Informatics and Radioelectronics.
220013, Minsk, P. Brovki str., 6.
tel. + 375 17 293 84 09
V. T. Shandarovich
Belarus
Veranika T. Shandarovich - research assistant of the R&D laboratory 4.4 of R&D Department of Belarusian State University of Informatics and Radioelectronics.
220013, Minsk, P. Brovki str., 6.
tel. + 375 17 293 84 09
Dao Dinh Ha
Belarus
Dao Dinh Ha - PhD, researcher of Le Quy Don Technical University, Hanoi, Vietnam.
220013, Minsk, P. Brovki str., 6.
tel. + 375 17 293 84 09
References
1. Kuzmik J., Bychikhin S., Pichonat E., Gaquiere C., Morvan E., Kohn E., Teyssier J.-P. Pogany D. SelfHeating Phenomena in High-Power III-N Transistors and New Thermal Characterization Methods Developed Within EU Project TARGET. International Journal of Microwave and Wireless Technologies. 2009;1(2):153-160. DOI: 10.1017/S1759078709990444.
2. Sun J., Fatima H., Koudymov A., Chitnis A., Hu X., Wang H.-M., Zhang J., Simin G., Yang J., Asif Khan M. Thermal Management of AlGaN-GaN HFETs on Sapphire Using Flip-Chip Bonding with Epoxy Underfill. IEEE Electron Device Letters. 2003;24(6):375-377. DOI: https://doi.org/10.1109/LED.2003.813362.
3. Felbinger J.G., Chandra M.V.S., Sun Y., Eastman L.F., Wasserbauer J., Faili F., Babic D., Francis D., Ejeckam F. Comparison of GaN HEMTs on Diamond and SiC Substrates. IEEE Electron Device Letters. 2007;28(11):948-950. DOI: 10.1149/2.0441712jss.
4. Hirama K., Taniyasu Y., Kasu M. AlGaN/GaN High-Electron Mobility Transistors with Low Thermal Resistance Grown on Single-Crystal Diamond (111) Substrates by Metalorganic Vapor-Phase Epitaxy. Applied Physics Letters. 2011;98(16):162112-1-162112-3. DOI: 10.1063/1.3574531.
5. Pavlidis G., Kim S.H., Abid I., Zegaoui M., Medjdoub F., Graham S. The Effects of AlN and Copper Back Side Deposition on the Performance of Etched Back GaN/Si HEMTs. IEEE Electron Device Letters. 2019;40(7):1060-1063. DOI: 10.1109/LED.2019.2915984.
6. Grishakov K.S., Elesin V.F., Kargin N.I., Ryzhuk R.V., Minnebaev S.V. Effect of a Diamond Heat Spreader on the Characteristics of Gallium-Nitride-Based Transistors. Russian Microelectronics. 2016;45(1):41-53. DOI: 10.1134/S1063739716010054.
7. Rajan S., Waltereit P., Poblenz C., Heikman S.J., Green D.S., Speck J.S., Mishra U.K. Power Performance of AlGaN-GaN HEMTs Grown on SiC by Plasma-Assisted MBE. IEEE Electron Device Letters. 2004;25(5):247-249. DOI: 10.1109/LED.2004.826977.
8. Balandin A.A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nature Materials. 2011;10:569-581. DOI: 10.1038/NMAT3064.
9. Yan Z., Liu G., Khan J.M., Balandin A.A. Graphene Quilts for Thermal Management of High-Power GaN Transistors. Nature Communications. 2012;3:827:1-8. DOI: 10.1038/ncomms1828.
10. Farahmand M., Garetto C., Bellotti E., Brennan K.F., Goano M., Ghillino E., Ghione G., Albrecht J.D., Ruden P.P. Monte Carlo Simulation of Electron Transport in the III-Nitride Wurtzite Phase Materials System: Binaries and Ternaries. IEEE Transactions on Electron Devices. 2001;48(3):535-542. DOI: 10.1109/16.906448.
11. Wachutka G.K. Rigorous Thermodynamic Treatment of Heat Generation and Conduction in Semiconductor Device Modeling. IEEE Transactions on Computer-Aided Design. 1990;9(11):1141-1149. DOI: 10.1109/43.62751.
12. Burgemeister E.A., von Muench W., Pettenpaul E. Thermal Conductivity and Electrical Properties of 6H Silicon Carbide. Journal of Applied Physics. 1979;50(9):5790-5794. DOI: 10.1063/1.326720.
13. Hofmeister A.M. Thermal Diffusivity and Thermal Conductivity of Single-Crystal MgO and АЕОэ and Related Compounds as a Function of Temperature. Physics and Chemistry of Minerals. 2014;41:361-371. DOI: 10.1007/s00269-014-0655-3.
14. Piprek J. semiconductor optoelectronic Devices: Introduction to Physics and simulation. San Diego, California: Academic Press; 2003.
15. Fornarini L., Conde J.C., Alvani C., Olevano D., Chiussi S. Experimental Determination of La2O3 Thermal Conductivity and Its Application to the Thermal Analysis of a-Ge/La2O3/c-Si Laser Annealing. Thin solid Films. 2008;516:7400-7405. DOI: 10.1016/j.tsf.2008.02.032.
Review
For citations:
Volcheck V.S., Lovshenko I.Yu., Shandarovich V.T., Ha D.D. Gallium nitride high electron mobility transistor with an effective graphene-based heat removal system. Doklady BGUIR. 2020;18(3):72-80. (In Russ.) https://doi.org/10.35596/1729-7648-2020-18-3-72-80