Preview

Doklady BGUIR

Advanced search

Structure and morphology of CrSi2 layers formed by rapid thermal treatment

https://doi.org/10.35596/1729-7648-2020-18-4-71-79

Abstract

The formation of chromium disilicide layers on n-type single crystal silicon substrates (111) during rapid thermal annealing in heat balance mode by the methods of Rutherford backscattering, X-ray diffraction and transmission electron microscopy of cross sections was investigated. Chromium films of about 30 nm thickness were deposited by magnetron sputtering of a chromium target with argon ions onto silicon substrates at room temperature. The rapid thermal treatment was carried out in a temperature range of 200 to 550 °C in a heat balance mode by irradiating the substrates backside with a non-coherent light flux of quartz halogen lamps in a nitrogen ambient for 7 s. It was established that hexagonal phase of chromium disilicide formation with grain size of 150–300 nm occurs in a threshold manner when the temperature of rapid thermal treatment exceeds 400 °C. At the same time, there are strong changes in the films surface morphology and surface roughness, and a silicide-silicon interface occur. In this case the wavy film surface morphology practically repeats silicide-silicon interface morphology (the surface exactly replicates the interface). The mechanism of CrSi2/Si interface structure roughness formation based on consideration of Kirkendall effect and deformation-stimulated diffusion of vacancies is proposed and discussed. The research results of the structure and morphology of CrSi2 layers on silicon are well-correlated with the results of the Schottky barrier electrophysical measurements. The results obtained can be used in microelectronics for forming rectifying contacts and interconnects metallization for integrated circuits, as well as for thermoelectric and optoelectronic applications.

About the Authors

J. A. Solovjov
JSC «INTEGRAL» – «INTEGRAL» Holding Managing Company
Belarus

Solovjov JA.А., PhD, Аssociate Professor, Deputy Director of “Transistor”

220108, Minsk, Korzhenevskogo str., 16, tel. +375-172-122-121



V. A. Pillipenko
JSC «INTEGRAL» – «INTEGRAL» Holding Managing Company
Belarus
Pilipenko V.A., D.Sci., Professor, Corresponding Member of the NAS of Belarus, Deputy Director for Science Research of the State Centre “Belmicroanalysis” Affiliate RDC “Belmicrosystems”


P. I. Gaiduk
Belorussian State University
Belarus
Gaiduk P.I., D.Sci., Professor, Professor of Physical electronics and nanotechnologies Department


References

1. Borisenko V.E., Semiconducting Silicides. Berlin: Springer; 2000.

2. M’jurarka Sh.P. [Silitsidy dlja SBIS]. Мoscow: Mir; 1986. (In Russ.)

3. Shinoda D., Asanabe S., Sasaki Y.J. Semiconductor properties of chromium disilicide. J. Phys. Soc. of Japan. 1964;19(3):269-272. DOI: 10.1143/JPSJ.19.269.

4. Nishida I. The crystal growth and thermoelectric properties of chromium disilicide. J. Mat. Sci. 1972;7:1119-1124. DOI: 10.1007/BF00550193.

5. Karuppaiah S., Beaudhuin M., Viennois R. Investigation on the thermoelectric properties of nanostructured Cr1-x TixSi2. Journal of Solid State Chemistry. 2013;199:90-95. DOI: 10.1016/j.jssc.2012.12.004.

6. Khalil M., Beaudhuin M., Villeroy B., Ravot D., Viennois R. A modeling approach for new CrSi2 based alloys: Application to metastable Cr1-x Zrx Si2 as a potential thermoelectric material. Journal of Alloys and Compounds. 2016;662:150-156. DOI: 10.1016/j.jallcom.2015.12.048.

7. Long R.G., Becker J.P., Mahan J.E., Vantomme A., Nicolet M.-A. Heteroepitaxial relationships for CrSi2 thin films on Si(111). J. App. Phys. 1995;77:3088-3094. DOI: 10.1063/1.359539.

8. Rocher A., Oustry A., David M.J., Caumont M. CrSi2/Si(111): Growth of monotype domains by solid phase epitaxy on a vicinal surface. J. Vac. Sci Technol. A. 1994;12:3018-3022. DOI: 10.1116/1.578930.

9. Martinez A., Esteve D., Guivarch A., Auvray P., Henoc P., Pelous G. Solid-State Electronics. 1980;23:55-63. DOI: 10.1016/0038-1101(80)90168-9.

10. Filonenko O., Falke M., Hortenbach H., Henning A., Beddies G., Hinneberg H.-J. Appl. Surf. Sci. 2004;227:341-348. DOI: 10.1016/j.apsusc.2003.12.011.

11. Jones K.S., Prussin S., Weber E.R. A systematic analysis of defects in ion-implanted silicon. Appl. Phys. A. 1988;45:1-34. DOI: 10.1007/BF00618760.

12. Gaiduk P.I., Hansen J.L., Larsen A.N., Steinman E.A. Nanovoids in MBE grown SiGe alloys in-situ implanted with Ge+ ions. Physical Review B. 2003;67:235310. DOI: 10.1103/PhysRevB.67.235310.

13. Gaiduk P.I., Hansen J.L., Larsen A.N., Wendler E., Wesch W. Self assembling of nanovoids in 800 keV Ge implanted Si/SiGe multi-layered structure. Physical Review B. 2003;67:235311. DOI: 10.1103/PhysRevB.67.235311.

14. Solovjov J.A., Pilipenko V.A. [Effect of rapid thermal treatment conditions on electrophysical properties of chromium thin films on silicon]. Doklady BGUIR = Doklady BGUIR. 2019;7-8(126):157-164. DOI: 10.35596/1729-7648-2019-126-8-157-164. (In Russ.)


Review

For citations:


Solovjov J.A., Pillipenko V.A., Gaiduk P.I. Structure and morphology of CrSi2 layers formed by rapid thermal treatment. Doklady BGUIR. 2020;18(4):71-79. (In Russ.) https://doi.org/10.35596/1729-7648-2020-18-4-71-79

Views: 603


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)