Preview

Доклады БГУИР

Расширенный поиск

ОСЛАБЛЕННОЕ УСЛОВИЕ РЕГУЛЯРНОСТИ МАНГАСАРЯНА-ФРОМОВИЦА И ЕГО ПРИЛОЖЕНИЯ

Аннотация

Условия регулярности играют важную роль в задачах математического программирования поскольку гарантируют выполнение необходимых условий оптимальности Куна-Таккера и построение на их основе двойственных алгоритмов для вычисления оптимальных решений. В то же время условия регулярности различаются между собой общностью, сравнительной простотой проверки и условиями применения. Наряду с классическими условиями регулярности (в первую очередь это известное условие Мангасаряна-Фромовица), в последнее время вызывают значительный интерес более слабые условия регулярности, применимые в задачах, для которых не имеют места классические условия. Целью данной работы является исследование ослабленного условия регулярности Мангасаряна-Фромовица и его связи с другими условиями регулярности.

Об авторах

С. В. Актанорович
Белорусский государственный университет информатики и радиоэлектроники
Беларусь


С. А. Богданов
Белорусский государственный университет информатики и радиоэлектроники
Беларусь


А. Е. Лещев
Белорусский государственный университет информатики и радиоэлектроники
Беларусь


Л. И. Минченко
Белорусский государственный университет информатики и радиоэлектроники
Беларусь


Список литературы

1. Mangasarian, O.L., Fromovitz, S. // Mathematical Analysis and Appl. 1967. №17. P. 37-47.

2. Janin R. // Mathematical Programming Study. 1984. № 21. P. 110-126.

3. Minchenko L., Stakhovski S. // Optimization. 2011. № 60 (4). P. 429-440.

4. Minchenko L., Stakhovski S. // SIAM Journal on Optimization. 2011. № 21 (1). P. 314-332.

5. Bertsekas D.P. Convex analysis and optimization. Athens, 2003.

6. Федоров В.В. Численные методы максимина. М., 1979.

7. Ioffe A.D. Regular points of Lipschitz functions. // Transactions of American Mathematical Society.

8. Luderer B., Minchenko L., Satsura T. Multivalued analysis and nonlinear programming problems with perturbations. Dordrecht/Boston/London, 2002.

9. Minchenko L., Tarakanov A. // Optimization Theory and Appl. 2011. № 148. P. 571-579.

10. Andreani R., Martinez J.M., Schverdt M.L. // Optimization Theory and Appl. 2005. №125. P.473-485.

11. Qi L., Wei A. // SIAM Journal on Optimization. 2000. № 10 (4). P. 963-981.

12. Andreani R., Haeser G., Schuverdt M.L., et. al. // Mathematical Programming, Ser. A 135. 2012. P. 255-273.

13. Shu Lu. // Mathematical Programming. 2009. №126 (2). P. 365-392.

14. Shu Lu. Relation between the constant rank and the relaxed constant rank constraint qualifications // Optimization, 2010. DOI:10.1080/02331934.2010.527972.

15. Solodov M.V. Wiley Encyclopedia of Operations Research and Management Science, chapter Constraint Qualifications. NJ, USA, 2011.

16. Минченко Л.И., Стаховский С.М. // Докл. БГУИР. 2010. №8. С. 104-109.

17. R.Andreani, G. Haeser, M.L.Schuverdt, et. al. Two new weak constraint qualifications and applications // Optimization Online Preprint, 2011-07-3105.


Рецензия

Для цитирования:


Актанорович С.В., Богданов С.А., Лещев А.Е., Минченко Л.И. ОСЛАБЛЕННОЕ УСЛОВИЕ РЕГУЛЯРНОСТИ МАНГАСАРЯНА-ФРОМОВИЦА И ЕГО ПРИЛОЖЕНИЯ. Доклады БГУИР. 2013;(2):5-9.

For citation:


Aktanarovich S.V., Bogdanov S.A., Leschov A.E., Minchenko L.I. RELAXED MANGASARIAN-FROMOVITZ CONSTRAINT QUALIFICATION AND ITS APPLICATIONS. Doklady BGUIR. 2013;(2):5-9. (In Russ.)

Просмотров: 285


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)