Preview

Доклады БГУИР

Расширенный поиск

END TO END LEARNING FOR A DRIVING SIMULATOR

Полный текст:

Аннотация

Convolutional network approach is utilized for training an end-to-end model that would let a car drive itself around the track in a driving simulator by predicting steering angles based on the simulated camera data.

Об авторах

V. Alexeev
Belarusian state university of informatics and radioelectronics
Беларусь


A. Staravoitau
Belarusian state university of informatics and radioelectronics
Беларусь


G. Piskun
Belarusian state university of informatics and radioelectronics
Беларусь


D. Likhacheuski
Belarusian state university of informatics and radioelectronics
Беларусь


Список литературы

1. Krizhevsky A., Sutskever I., Hinton G.E. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems. Curran Associates, Inc., 2012. P. 1097-1105.

2. End to end learning for self-driving cars / M. Bojarski [et al.]. 2016. arXiv preprint arXiv:1604.07316.

3. Net-Scale Technologies, Inc. Autonomous off-road vehicle control using end-to-end learning, July 2004. Final technical report [Electronic resource]. - URL: http://net-scale.com/doc/net-scale-dave-report.pdf (access date: 01.03.2018).

4. Udacity Inc., Udacity's Self-Driving Car Simulator, GitHub repository [Electronic resource]. - URL: https://github.com/udacity/self-driving-car-sim (access date: 01.03.2018).

5. Diederik P.K., Jimmy B.A. A Method for Stochastic Optimization. 2017. arXiv preprint arXiv:1412.6980v9.

6. Glorot X., Bordes A., Bengio Y. Deep sparse rectifier neural networks. AISTATS [Electronic resource]. - URL: http://jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf (access date: 01.03.2018).

7. Scherer D., Müller A.C., Behnke S. Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition // 20th International Conference «Artificial Neural Networks (ICANN)». Thessaloniki, Greece, 2010. P. 92-101.

8. Subject independent facial expression recognition with robust face detection using a convolutional neural network / Matusugu M. [et al.]. Neural Networks. 2003. № 16 (5). P. 555-559.


Для цитирования:


., ., ., . . Доклады БГУИР. 2018;(2):85-91.

For citation:


Alexeev V.F., Staravoitau A.I., Piskun G.A., Likhacheuski D.V. END TO END LEARNING FOR A DRIVING SIMULATOR. Doklady BGUIR. 2018;(2):85-91. (In Russ.)

Просмотров: 19


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)