Preview

Doklady BGUIR

Advanced search

Calculation of stationary points in linear bilevel programming problems

Abstract

Bilevel programming problems are considerably difficult for numerical analysis. Despite the vast amount of literature and research dedicated to studying them, there are no universal methods to solve them and numerous publications are concerned mainly with identifying particular subsets of problems that can be efficiently analyzed. Linear bilevel programming problems are considered, and an algorithm for computing their stationary points is developed in this paper.

About the Authors

D. E. Berezhnov
Belarusian state university of informatics and radioelectronics
Belarus


L. I. Minchenko
Belarusian state university of informatics and radioelectronics
Belarus


References

1. Dempe S. Foundations of Bilevel programming. Dordrecht. Kluwer Academic Publishers, 2002. 304 p.

2. Bard J.F. Practical Bilevel Optimization. Dordrecht: Kluwer Academic Publishers, 1998. 476 p.

3. Ye J.J., Zhu D.L. Optimality conditions for bilevel programming problems // Optimization. 1995. № 33. P. 9-27.

4. Ye J.J., Zhu D.L., Zhu Q.J. Exact penalization and necessary optimality conditions for generalized bilevel programming problems // SIAM J. Optimiz. 1997. № 7. P. 481-507.

5. Morukhovich B.S., Nam M.N., Phan H.M. Variational analysis of marginal function with applications to bilevel programming problems // J. Optim. Theory Appl. 2012. № 152. P. 557-586.

6. Рокафеллар Р.Т. Выпуклый анализ. М.: Мир, 1971. 469 с.

7. Luderer B., Minchenko L., Satsura T. Multivalued Analysis and Nonlinear Programming Problems with Perturbations. Dordreht: Kluwer Acad. Publ., 2002. 220 p.

8. Hoffman A.J. On approximate solutions of systems of linear inequalities // J. Res. Natl. Bureau Stand. 1952. № 49. P. 263-265.

9. Федоров В.В. Численные методы максимина. М., Наука, 1979. 278 c.

10. Кларк Ф. Оптимизация и негладкий анализ. М.: Наука, 1988. 280 с.

11. Пшеничный Б.Н. Выпуклый анализ и экстремальные задачи. М.: Наука, 1980. 319 с.

12. Хамисов О.В. Методы выпуклых и вогнутых опорных функций в задачах глобальной оптимизации: автореферат дис. … д-ра физ.-мат. наук. Иркутск, 2010. 35 c.

13. Dempe S., Dutta J., Mordukhovich B.S. New necessary optimality conditions in optimistic bilevel programming // Optimization. 2007. № 56. P. 577-604.

14. Dempe S., Zemkoho A.B. The bilevel programming problem: reformulations, constraint qualifications and optimality conditions // Mathematical Programming. 2013. № 138 (1-2). P. 447-473.

15. Dempe S., Mordukhovich B.S., Zemkoho A.B. Necessary optimality conditions in pessimistic bilevel programming // Optimization. 2014. № 63. P. 505-533.

16. A new method for strong-weak linear bilevel programming problem / Y. Zheng [et al.] // J. Industrial and Management Optimization. 2015. Vol. 11, № 2. P. 529-547.

17. Cao D., Leung L.C., A partial cooperation model for non-unique linear two-level decision problems // European J. of Operational Research. 2002. № 140. P. 134-141.

18. Glackin J., Ecker J.G., Kupferschmid M. Solving bilevel linear programs using multiple objective linear programming // J. Optimiz. Theory and Appl. 2009. № 140. P.197-212.


Review

For citations:


Berezhnov D.E., Minchenko L.I. Calculation of stationary points in linear bilevel programming problems. Doklady BGUIR. 2017;(6):55-62. (In Russ.)

Views: 415


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)