Preview

Doklady BGUIR

Advanced search

The methodology of modeling of electronic properties of bulk semiconductor compounds

Abstract

An analysis of modern methods of modeling of the fundamental electronic properties of bulk semiconductors based on the electron density functional theory is performed and a technique taking into account the peculiarities of semiconductor compounds has been proposed. The procedure of creation of a model of the investigated object and an estimation of its adequacy is described. As an example the comparison of the results of calculations of electronic spectra and optical functions of MoS2 obtained in the framework of various functionals is given. The parameters which adequately describe the properties of investigated material in the framework of the presented technique are established.

About the Authors

A. V. Krivosheeva
Belarusian state university of informatics and radioelectronics
Belarus


V. L. Shaposhnikov
Belarusian state university of informatics and radioelectronics
Belarus


V. E. Borisenko
Belarusian state university of informatics and radioelectronics
Belarus


References

1. Thomas L.H. The calculation of atomic fields // Mathematical Proceedings of the Cambridge Philosophical Society. 1927. Vol. 23, № 05. P. 542-548.

2. Fermi E. Statistical method of investigating electrons in atoms // Z. Phys. 1928. Vol. 48. P.73-79.

3. Slater J.C. A Generalized Self-Consistent Field Method // Phys. Rev. 1953. Vol. 91. P. 528-530.

4. Evarestov R.A. Theoretical Modeling of Inorganic Nanostructures: Symmetry and ab-initio Calculations of Nanolayers, Nanotubes and Nanowires. Springer-Verlag Berlin Heidelberg 2015.

5. Бехштедт Ф., Эндерлайн Р. Поверхности и границы раздела полупроводников. М.: Мир, 1990. 488 c.

6. Improving the efficiency of FP-LAPW calculations / M. Petersen [et al.] // Comp. Phys. Commun. 2000. Vol. 126, № 3. P. 294-309.

7. Kresse G., Furthmüller J. Efficient interactive schemes for ab initio total-energy calculations using a plane-wave basis set // Phys. Rev. B. 1996. Vol. 54. P. 11169-11186.

8. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. 1996. Vol. 77. P. 3865-3868.

9. Van der Waals density functionals applied to solids / J. Klimeš [et al.] // Phys. Rev. B. 2011. Vol. 83. P. 195131 (1-13).

10. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy / R. Coehoorn [et al.] // Phys. Rev. B. 1987. Vol. 35. P. 6195-6202.

11. Bromley R.A., Murray R.B., Yoffe A.D. The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials J. Phys. 1972. C 5. P. 759.

12. Gmelin Handbook of Inorganic and Organometallic Chemistry. Springer-Verlag, Berlin, 1995. Vol. B7.

13. Kadantsev E.S., Hawrylak P. Electronic structure of a single MoS2 monolayer // Sol. State Commun. 2012. Vol. 152. P. 909-913.

14. Adsorption and Diffusion of Lithium on MoS2 Monolayer: The Role of Strain and Concentration / H.J. Chen [et al.] // Int. J. Electrochem. Sci. 2013. Vol. 8. P. 2196-2203.

15. Ab initio modeling of the structural, electronic and optical properties of AIIBIVCV2 semiconductors V.L. Shaposhnikov [et al.] // Phys. Rev. B. 2012. Vol. 85. P. 205201 (1-9).

16. Structural, electronic and optical properties of II-IV-N2 compounds (II = Be, Zn; IV = Si, Ge) V.L. Shaposhnikov [et al.] // Phys. Stat. Sol. (b). 2008. Vol. 245. № 1. P. 142-148.

17. Полупроводниковые свойства CrSi2 c деформированной решеткой / А.В. Кривошеева [и др.] // Физика и техника полупроводников. 2003. Т. 37, № 4. С. 402-407.

18. Electronic and magnetic properties of Mn-doped BeSiAs2 and BeGeAs2 compounds / A.V. Krivosheeva [et al.] // J. Phys.: Condens. Matter. 2009. Vol. 21. P. 045507 (6 pp).

19. Magnetic properties of semiconducting chalcopyrites / A.V. Krivosheeva [et al.] // Physica Status Solidi (b). 2014. № 251 (5). P. 1007-1019.

20. Electronic and dynamical properties of bulk and layered MoS2 / A.V. Krivosheeva [et al.] // Доклады БГУИР. 2014. № 5 (83). С. 34-37.

21. Krivosheeva A.V. Possibilities of band gap engineering in two-dimensional hexagonal dichalcogenides // Proceedings of International Conference Nanomeeting-2015. In: Physics, Chemistry and Application of Nanostructures. Singapore, 2015. P. 161-168.

22. Band gap modifications of two-dimensional defected MoS2 / A.V. Krivosheeva [et al.] // Int. J. Nanotechnol. 2015. Vol. 12, № 8-9. P. 654-662.

23. Theoretical study of defect impact on two-dimensional MoS2 / A.V. Krivosheeva [et al.] // J. Semiconductors. 2015. Vol. 36 (12). P. 122002 (6 pp).


Review

For citations:


Krivosheeva A.V., Shaposhnikov V.L., Borisenko V.E. The methodology of modeling of electronic properties of bulk semiconductor compounds. Doklady BGUIR. 2017;(4):70-76. (In Russ.)

Views: 409


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)