Preview

Doklady BGUIR

Advanced search

MODERN METHODS OF AUTOMATIC RECTANGLE OBJECTS DETECTION

Abstract

Low-level and high-level feature extraction methods and algorithms for the image formation of a rectangular object were considered. The algorithm for object detection based on correlation analysis, as well as the algorithm containing the use of Canny edge detector, Hough and Radon transform for lines detection, and then, depending on the properties of the object lines combining in the rectangular area, were explored. The algorithms were tested on the base of 1000 passports for the problem of accurate photo edges detection.

About the Authors

E. S. Matusevich
Белорусский государственный университет
Belarus


I. E. Kheidorov
Белорусский государственный университет
Belarus


References

1. Noronha S., Nevatia R. Detection and modeling of buildings from multiple aerial images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001.

2. Юзов М.В., Пугачёв Е.К. // Инж.вестн. № 12. 2014.

3. Guerzhoy M., Zhou H. Segmentation of Rectangular Objects Lying on an Unknown Background in a Small Preview Scan Image. IEEE Proceedings of Conference on Computer and Robot Vision, 2008.

4. Jung C.R., Schramm R. // SIBGRAPI '04 Proceedings of the Computer Graphics and Image Processing. Brazie, 2004.

5. Nadernejad E., Sharifzadeh S., Hassanpour H. // Edge detection techniques: Evaluations and comparisons. Applied Mathematical Sciences, 2008.

6. Canny J. Finding edges and lines in images. Cambridge, 1983.

7. Шух О.Г., Рассомахин С.Г. // Системы обработки информации. 2012. Вып. 3(1). С. 85-88.

8. Дегтярева А., Вежневец В. // Компьютерная графика и мультимедиа. 2003. № 1 (2).

9. Жданов И.Н. // Обнаружение объектов со статистически зависимыми геометрическими параметрами на изображениях на основе теоретико-информационного обобщения преобразования Хафа: дисс. … канд. техн. наук. СПб, 2015.

10. Запрягаев С.А., Сорокин А.И. // Прикладная информатика. 2009. № 4 (22). С. 76-86.

11. Гонсалес Р., Вудс, Р. Цифровая обработка изображений. М., 2006.

12. Farley B.G., Clark W.A. // IRE Transactions on Information Theory. 1954. № 4. P. 76-84.

13. Хайкин С. Нейронные сети. М., 2006.

14. El-Sayed M. A., Estaitia Y.A. // International Journal of Advanced Computer Science and Applications (IJACSA). 2013. Vol. 4, Iss. 10.

15. Toss T. Automatic identification and cropping of rectangular objects in digital images. Master thesis. Uppsala University, 2012.

16. Zhao F., Wei C., Wang J. // J. of Software. 2011. Vol. 6, Iss. 5. P. 791.


Review

For citations:


Matusevich E.S., Kheidorov I.E. MODERN METHODS OF AUTOMATIC RECTANGLE OBJECTS DETECTION. Doklady BGUIR. 2016;(8):53-58. (In Russ.)

Views: 350


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)