Preview

Doklady BGUIR

Advanced search

The recursive algorithm to construct Dirichlet function

Abstract

The problem of determining the total number of rational fractions with values are equal to x is considered. The importance of this problem is demonstrated for the procedures processing statistical data, representing the ratio of two discrete variables with a variable denominator. It is found out, that that required number of fractions is equal to the Dirichlet function value at the x point, and the original rule is proposed to construct it, which has a simple geometric interpretation. A proposed implementation of this algorithm shows its computational efficiency, and its importance is noted for problems requiring generation of relatively prime numbers.

About the Authors

A. N. Lysiuk
Брестский государственный технический университет
Belarus


S. S. Derechennik
Брестский государственный технический университет
Belarus


References

1. Александров П.С. Введение в теорию множеств и общую топологию. М., 1977.

2. Bruckner A., Bruckner J., Thomson B. Elementary Real Analysis. NJ, 2008.

3. Кнут Д.Э. Искусство программирования. Получисленные методы. М., 2007.

4. Виноградов И.М. Основы теории чисел. М., 1965.

5. Apostol T.M. Modular Functions and Dirichlet Series in Number Theory. NY, 1997.

6. Hill L.S. // The American Mathematical Monthly. 1929. Vol. 36. P. 306-312.

7. Kahn D. The Codebreakers: The Story of Secret Writing. NY, 1996.

8. Gentle J. Random Number Generation and Monte Carlo Methods. NY, 2003.


Review

For citations:


Lysiuk A.N., Derechennik S.S. The recursive algorithm to construct Dirichlet function. Doklady BGUIR. 2012;(5):116-121. (In Russ.)

Views: 442


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)