Preview

Doklady BGUIR

Advanced search

USE OF NEURAL NETWORKS FOR DETECTION AND RECOGNITION OF THE ANOMALIES IN ENTERPRISE CORPORATIVE INFORMATION SYSTEM

Abstract

The neural networks structure using for task solving of information defense are discussed. The choice of attribute and metadata of executing files with two states (clean and with viruses) which used for multilevel perseptron teaching are built. The teaching was realized within SPSS Statistics - program of IBM Company. After the teaching of neural network the efficiently its working with the control choice of executing files was determined. The relative value of files classification was 5 %, that it is the good result. The file choice must be greater and viruses more variables within the use such approach for large enterprise corporative information systems.

About the Authors

U. A. Vishniakou
П.Бровки, 6, Минск, 220600, Беларусь
Belarus


O. S. Koval
П.Бровки, 6, Минск, 220600, Беларусь
Belarus


M. G. Mozdurani Shiraz
П.Бровки, 6, Минск, 220600, Беларусь
Belarus


References

1. Головко В.А. Нейронные сети: обучение, организация и применение. М., 2001.

2. Вишняков В.А. Информационное управление и безопасность: методы, модели, программно-аппаратные решения. Минск, 2014.

3. Bishop C.M. Neural Networks for Pattern Recognition. Oxford, 1955.

4. Shivani Shah, Himali Jani, Sathvik Shetty et.al. // International Journal of Computer Applications. 2013. Vol. 84, № 5. P. 17-23.

5. Matt Pietrek «Peering Inside the PE: A Tour of the Win32 Portable Executable File Format» [Электронный ресурс]. - Режим доступа : https://msdn.microsoft.com/en-us/library/ms809762.aspx. Дата доступа: 10.12.2015.

6. Программа PE Explorer [Электронный ресурс]. - Режим доступа: http://www.pe-explorer.com/. Дата доступа: 10.12.2015.


Review

For citations:


Vishniakou U.A., Koval O.S., Mozdurani Shiraz M.G. USE OF NEURAL NETWORKS FOR DETECTION AND RECOGNITION OF THE ANOMALIES IN ENTERPRISE CORPORATIVE INFORMATION SYSTEM. Doklady BGUIR. 2016;(4):86-92. (In Russ.)

Views: 3551


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)