Preview

Doklady BGUIR

Advanced search

REAL TIME OBJECT MONITORING USING ADAPTIVE CORRELATION FILTER

Abstract

Real time localization of a moving or stationary object in a video stream is one of the most complex tasks in video processing due to changing background conditions or full / partial object overlaps is considered. For present moment, a number of techniques and solution proposed, nevertheless the task is still actual and no one can speak about revolutionary breakthrough. Present article describes real-time object tracking algorithm based on adaptive correlation filter usage. The algorithm is autonomous and doesn't need parameters adjustments from the beginning till the end of its functioning.

About the Authors

A. M. Polonevitch
Закрытое акционерное общество «ЦНИП»
Belarus


M. P. Revotjuk
Белорусский государственный университет информатики и радиоэлектроники
Belarus


References

1. Kaufmann M. Machine Vision: Theory, Algorithms, Practicalities. San Francisco, 2004.

2. David G. Lowe // Proceedings of the International Conference on Computer Vision. Kerkyra, 20-27 September 1999. P. 1150-1157.

3. Herbert B., Ess A., Tuytelaars T. et. al. // Computer Vision and Image Understanding (CVIU). 2008. Vol. 110, № 3. P. 346-359.

4. Unified Real-Time Tracking and Recognition with Rotation-Invariant Fast Features. [Электронный ресурс]. - Режим доступа: http://vijaychan.github.io/Publications/2010 - Unified Real-Time Tracking and Recognition with Rotation-Invariant Fast Features.pdf. - Дата доступа: 23.10.2015.

5. Cheng Yizong // IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE). 1995. P. 790-799.

6. Comaniciu D., Meer P. // IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE). 2002, P. 603-619.

7. Brunelli R. Template Matching Techniques in Computer Vision: Theory and Practice. Hoboken, 2009.

8. Duda R., Hart P. Template Matching. Hoboken, 1973.

9. Average of Synthetic Exact Filters. [Электронный ресурс]. - Режим доступа: http://www.cs.colostate.edu/~vision/publications/Bolme2009Asef.pdf. - Дата доступа: 23.10.2015.

10. Introduction to BiometricRecognition Technologies and Applications. [Электронный ресурс]. - Режим доступа: http://users.ece.cmu.edu/~jzhu/class/18200/F05/Lecture06_Marios_Lecture.pdf. - Дата доступа: 23.10.2015.

11. Bradski G., Kaehler A. Learning OpenCV Computer Vision with the OpenCV Library. Sebastopol, 2008.

12. Breiman L. Bagging Predictors. Machine Learning. New Mexico, 1996.

13. Bolme D. Theory and Applications of Optimized Correlation Output Filters: Дис. … канд. физ-мат. наук. Колорадо, 2011.

14. Kumar B., Mahalanobis A., Song S., et. al. // Optical Engineering. 1992. Vol. 31. P. 915-922.

15. Mahalanobis A., Kumar B., Song S., et. al. // Applied Optics, 1994. Vol. 33. P. 3751-3759.


Review

For citations:


Polonevitch A.M., Revotjuk M.P. REAL TIME OBJECT MONITORING USING ADAPTIVE CORRELATION FILTER. Doklady BGUIR. 2015;(7):45-50. (In Russ.)

Views: 2159


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)