Preview

Doklady BGUIR

Advanced search

OBJECT DETECTION IN COMPUTER VISION SYSTEMS: A VISUAL SALIENCY BASED APPROACH

Abstract

A combined approach of object detection in image and eye fixation probability map calculation is proposed. This approach can be used in applied tasks of autonomous object detection. Experimental results show viability and efficiency of this approach as compared with state-of-art algorithms, and predict its usability on the broader class of tasks - applied variations of eye fixation problem.

About the Authors

V. A. Kachurka
Брестский государственный технический университет
Belarus


K. .. Madani
Университет Пари-Эст Кретей, технологический институт Сенарт-Фонтенбло
Belarus


C. .. Sabourin
Университет Пари-Эст Кретей, технологический институт Сенарт-Фонтенбло
Belarus


V. A. Golovko
Брестский государственный технический университет
Belarus


P. A. Kachurka
Брестский государственный технический университет
Belarus


References

1. Рахилина Е. В. // МГУ. Семиотика и информатика. 1998. № 36. С. 274-323.

2. Ахмадеева И.Р. // Вестник НГУ. Серия Информационные технологии. 2014. № 3. С. 5-15.

3. Андрианов А. И. // МФТИ. Физико-математические науки. 2013. № 3. С. 47-50.

4. Малахов К.А. // Известия СПбГЭТУ ЛЭТИ. 2010. № 8. С. 7-11.

5. Borji A., Itti L. // IEEE Transactions on Pattern Analysis & Machine Intelligence. 2013. № 35-1. P. 185-207

6. Ramík D.M., Sabourin C., Madani K. // Рroc. signal-image technology and internet-based systems. Dijon, 28 November-3 December. P. 438-446.

7. Ramík D.M. Contribution to complex visual information processing and autonomous knowledge extraction: application to autonomous robotics : Ph.D. dissertation. Paris, 2012.

8. Borji A., Tavakoli H.R., Sihite D.N. et al. // Рroc. IEEE Computer Vision and Pattern Recognition. Sydney, 1-8 Dectmber 2013. P. 921-928.

9. Liu T., Sun J., Zheng N.N. et al. // Рroc. IEEE Computer Vision and Pattern Recognition. Minneapolis, 18-23 June, 2007. P. 1605-1613.

10. Visual salience [Electronic resource] / ed. L. Itti. - Scholarpedia, 2007, rev. 2(9):3327. - Mode of access : http://www.scholarpedia.org/article/Visual_salience. - Date of access : 15.03.2015.

11. A Benchmark of Computational Models of Saliency to Predict Human Fixations [Electronic resource] / ed. T. Judd, F. Durand and A. Torralba. - MIT Technical Report, 2012. - Mode of access : http://saliency.mit.edu/. - Date of access : 15.03.2015.

12. Bruce N., Tsotsos J. // J. Vision. 2007. Vol. 7, №9. P. 950-957.

13. Judd T., Ehinger K., Durand F. et al. // Рroc. IEEE International Conference on Computer Vision. Kyoto, 27 Sep.-4 Oct., 2009. P. 2106-2113.

14. Contreras-Reyes J.E., Arellano-Valle R.B. // Entropy. 2012. Vol. 14, № 9. P. 1606-1626.

15. Vig E., Dorr M., Cox D. // Рroc. IEEE Computer Vision and Pattern Recognition. Columbus, 23-28 June, 2014. P. 2798-2805.

16. Zhang J., Sclaroff S. Saliency Detection Рroc. IEEE Computer Vision and Pattern Recognition. Sydney, 1-8 Dec. 2013. P. 153-160.

17. Riche N., Mancas M., Duvinage M. et al. RARE2012 // Signal Processing: Image Communication. 2013. Vol. 28, № 6. P. 642-658.


Review

For citations:


Kachurka V.A., Madani K..., Sabourin C..., Golovko V.A., Kachurka P.A. OBJECT DETECTION IN COMPUTER VISION SYSTEMS: A VISUAL SALIENCY BASED APPROACH. Doklady BGUIR. 2015;(5):47-53. (In Russ.)

Views: 395


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)