Preview

Doklady BGUIR

Advanced search

METHOD TO PREDICT SOFTWARE RELIABILITY

Abstract

A method to predict the reliability of software is introduced in this paper. The method is based on the calculation of correlation between reliability measures and software errors. The dependency between errors and reliability is defined by calculating Pearson correlation ratio, which is used further to build the identity matrix to match error groups and reliability measures. Input for this calculation is well defined and explained including the direction of the correlation and confidence level. This paper also proposes the way to integrate the introduced method into agile software development process.

About the Authors

S. N. Niaborski
Белорусский государственный университет информатики и радиоэлектроники
Belarus


V. V. Bakhtizin
Белорусский государственный университет информатики и радиоэлектроники
Belarus


References

1. Sillitti A., Ceschi M., Russo B. // Software Metrics. 2005. P. 10-17.

2. Pandey A.K., Goyal N.K. Early Software Reliability Prediction. London, 2013.

3. Wood A. // Computer. 1996. № 29 (1). P. 69-77.

4. Дроботун Е.Б. // Современные телекоммуникационные и информационные технологии. 2009. № 4. С. 73-74.

5. Гмурман В.Е. Теория вероятностей и математическая статистика. М., 2004.

6. Шмойлова Р.А. Общая теория статистики. М., 2002.

7. Boehm B. // IEEE Software Development. 2002. № 1. P. 64-69.

8. Schwaber K. The Enterprise and Scrum. Redmond, 2007.

9. Palmer S.R., Felsing J.M. A practical guide to feature-driven development. New Jersey, 2002.

10. Ahmed K.Z., Umrysh C. Developing enterprise java applications with J2EE and UML. Boston, 2002.

11. ISO/IEC 25010:2011. Systems and software engineering - Systems and software Quality Requirements and Evaluation (SQuaRE) - System and software quality models.


Review

For citations:


Niaborski S.N., Bakhtizin V.V. METHOD TO PREDICT SOFTWARE RELIABILITY. Doklady BGUIR. 2015;(5):41-46. (In Russ.)

Views: 367


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)