Preview

Doklady BGUIR

Advanced search

Cross-Platform Material Band Structure Analyzer for the OpenMX Quantum Mechanical Modeling

https://doi.org/10.35596/1729-7648-2025-23-5-83-92

Abstract

The article describes the architecture and functionality of a cross-platform band structure analyzer for processing the calculation results of the popular specialized OpenMX material properties modeling package. Its operation is demonstrated using a test task as an example. Commercial packages for analyzing and processing data obtained in programs for quantum mechanical modeling of materials are presented. It is shown that the OpenMX package lacks an analyzer program for processing the results of calculations of the structure of materials. Practical problems of analyzing the calculations of the band structure of materials and the functionality of such a program are considered, and requirements for its implementation are formulated. The proposed analyzer is not inferior in performance to the existing analog in terms of overall time costs, while it has a wider functionality, including basic analysis and post-processing of data with the ability to optionally customize the output file saved in a convenient text format. This development is promising in the context of universalization to ensure compatibility with other widely used commercial quantum mechanical modeling packages.

About the Authors

A. V. Baglov
Belarusian State University; Belarusian State University of Informatics and Radioelectronics
Belarus

Aleksey V. Baglov, Senior Researcher at the Laboratory of Energy Efficient Materials and Technologies; Researcher at the Center of Nanoelectronics and Advanced Materials,

4, Nezavisimosti Ave., Minsk, 220030.

Tel.: +375 17 293-53-55.



L. S. Khoroshko
Belarusian State University; Belarusian State University of Informatics and Radioelectronics
Belarus

Liudmila S. Khoroshko, Cand. Sci. (Phys. and Math.), Associate Professor, Leading Researcher at the Laboratory of Energy Efficient Materials and Technologies; Leading Researcher at the Center of Nanoelectronics and Advanced Materials,

Minsk.



References

1. Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., et al. (2009) Quantum ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. Journal of Physics: Condensed Matter. 21 (39). https://doi.org/10.1088/0953-8984/21/39/395502.

2. Kresse G., Furthmüller J. (1996) Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B. 54 (16). https://doi.org/10.1103/PhysRevB.54.11169.

3. Clark S. J., Segall M. D., Pickard C. J., Hasnip P. J., Probert M. I. J., Refson K., et al. (2005) First Principles Methods Using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials. 220 (5–6), 567–570. https://doi.org/10.1524/zkri.220.5.567.65075.

4. Te Velde G., Bickelhaupt F. M., Baerends E. J., Fonseca Guerra C., Van Gisbergen S. J. A., Snijders J. G., et al. (2001) Chemistry with ADF. Journal of Computational Chemistry. 22 (9), 931–967. https://doi.org/10.1002/jcc.1056.

5. Smidstrup S., Markussen T., Vancraeyveld P., Wellendorff J., Schneider J., Gunst T., et al. (2019) QuantumATK: An Integrated Platform of Electronic and Atomic-Scale Modelling Tools. Journal of Physics: Condensed Matter. 32 (1). https://doi.org/10.1088/1361-648X/ab4007.

6. Wimmer E., Christensen M., Eyert V., Wolf W., Reith D., Rozanska X., et al. (2016) Computational Materials Engineering: Recent Applications of VASP in the MedeA® Software Environment. Journal of the Korean Ceramic Society. 53 (3), 263–272. https://doi.org/10.4191/kcers.2016.53.3.263.

7. Ozaki T. (2003) Variationally Optimized Atomic Orbitals for Large-Scale Electronic Structures. Physical Review B. 67. https://doi.org/10.1103/PhysRevB.67.155108.

8. Ozaki T., Kino H. (2004) Numerical Atomic Basis Orbitals from H to Kr. Physical Review B. 69. https://doi.org/10.1103/PhysRevB.69.195113.

9. Ozaki T., Kino H. (2005) Efficient Projector Expansion for the ab Initio LCAO Method. Physical Review B. 72. https://doi.org/10.1103/PhysRevB.72.045121.

10. Baglov A. V., Khoroshko L. S. (2021) Atom Species Energy Dependence on Magnetic Configurations in the Perovskite Yttrium Orthoferrite. Doklady BGUIR. 19 (8), 63–67. https://doi.org/10.35596/1729-76482021-19-8-63-67.

11. Baglov A. V., Khoroshko L. S. (2022) Crystal Structure and Electronic Properties of Rhenium Disulfide. Journal of Applied Spectroscopy. 89, 860–864. https://doi.org/10.1007/s10812-022-01438-x.

12. Baglov A., Khoroshko L., Zhoidzik A., Dong M., Weng Q., Kazi M. et al. (2024) Evolution of Structural and Electronic Properties Standardized Description in Rhenium Disulfide at the Bulk-Monolayer Transition. Heliyon. 10. https://doi.org/10.1016/j.heliyon.2024.e28646.

13. Baglov A. V., Khoroshko L. S., Silibin M. V., Karpinsky D. V. (2024) Electronic Structure of Bismuth Ferromanganite BiFe0.5Mn0.5O3. Semiconductors. 58 (13), 1054–1059. https://doi.org/10.1134/S1063782624700040.

14. Baglov A. V., Khoroshko L. S. (2023) Structural and Electronic Properties of SmGaGe2O7 Studied by First Principles Methods. Inorganic Materials. 59 (1), 1–7. https://doi.org/10.1134/S002016852301003X (in Russian).

15. Bonch-Bruevich V. L., Kalashnikov S. G. (1990) Physics of Semiconductors. Moscow, Nauka Publ. (in Russian).

16. Yu P. Y., Cardona M. (2010) Fundamentals of Semiconductors. Physics and Materials Properties. Germany, Springer Ltd Publ.

17. Raymond E. S. (2004) Basics of the Unix Philosophy. The Art of Unix Programming. Addison-Wesley Professional.


Review

For citations:


Baglov A.V., Khoroshko L.S. Cross-Platform Material Band Structure Analyzer for the OpenMX Quantum Mechanical Modeling. Doklady BGUIR. 2025;23(5):83-92. (In Russ.) https://doi.org/10.35596/1729-7648-2025-23-5-83-92

Views: 64


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)