Semiconductor Solid Solutions Cu2FeSn(Sx,Se1–x)4: Synthesis, Structural Properties, State Diagram
https://doi.org/10.35596/1729-7648-2025-23-5-27-34
Abstract
The article presents the results of obtaining large-block polycrystals of the semiconductor solid solution system Cu2FeSn(Sx,Se1–x)4, formed in the entire concentration range. It was found that both the compounds Cu2FeSnS4, Cu2FeSnSe4 and the solid solutions have a tetragonal stannite structure I4̅2m with a ratio of the unit cell parameters с/а ∼ 2. The unit cell parameters varied linearly in accordance with Vegard’s law – from a = (5.704 ± 0.005) Å and c = (11.261 ± 0.01) Å for Cu2FeSnSe4 to a = (5.441 ± 0.005) Å and c = (10.72 ± 0.01) Å for Cu2FeSnS4. The dependences of the X-ray density and the Debye temperature were determined. Based on the results of differential thermal analysis, the melting temperatures of the samples were determined and a system phase diagram was constructed.
About the Authors
V. V. KhoroshkoBelarus
Vitaliy V. Khoroshko, Сand. Sci. (Tech.), Associate Professor, Chair of Department of Information and Computer Systems Design,
6, P. Brovki St., Minsk, 220013.
Тel.: +375 44 737-99-99.
T. N. Osmolovskaya
Belarus
Tatiana N. Osmolovskaya, Postgraduate of the SPC NAS of Belarus,
Minsk.
A. V. Stanchik
Belarus
Aliona V. Stanchik, Сand. Sci. (Phys. and Math.), Associate Professor, Leading Researcher,
Minsk.
N. G. Pugach
Russian Federation
Natalia G. Pugach, Сand. Sci. (Phys. and Math.), Professor of the Department of Electronic Engineering,
Moscow.
A. S. Doroshkevich
Russian Federation
Alexandr S. Doroshkevich, Сand. Sci. (Phys. and Math.), Associate Professor, Head of the Research Sector Group,
Dubna.
Yu. V. Radyush
Belarus
Yuri V. Radyush, Сand. Sci. (Phys. and Math.), Associate Professor, Leading Researcher,
Minsk.
I. I. Kuzmar
Belarus
Inna I. Kuzmar, Сand. Sci. (Tech.), Associate Professor, Head of the Laboratory “Pulse Electrolysis and Multicomponent Materials”,
Minsk.
A. U. Loska
Belarus
Alena U. Loska, Engineer; Postgraduate Student,
Minsk.
References
1. Jing B., Ji J., Hao L., Yang T., Tan E. (2020) DFT Investigation on the Electronic, Magnetic, Mechanical Properties and Strain Effects of the Quaternary Compound Cu2FeSnS4. Crystals. 10 (6), 1–12. https://doi:10.3390/cryst10060509.
2. Rincón C., Quintero M., Moreno E., Power Ch., Quintero E., Henao J. A., et al. (2011) X-Ray Diffraction, Raman Spectrum and Magnetic Susceptibility of the Magnetic Semiconductor Cu2FeSnS4. Solid State Communications. 151 (13), 947–951. https://doi.org/10.1016/j.ssc.2011.04.002.
3. Xiaolu L., Xianhua W., Daocheng P. (2012) Dilute Magnetic Semiconductor Cu2FeSnS4 Nanocrystals with a Novel Zincblende Structure. Journal of Nanomaterials. 12. https://doi.org/10.1155/2012/708648.
4. Ghemud, V. S., Jadhav P. R., Kolhe P. T., Shelke P. N., Dahiwale S. S., Kshirsagar A. (2023) Experimental and Computational Study of Cu2FeSnS4: An Emerging Quaternary Semiconductor. Optical Materials. 142. https://doi.org/10.1016/j.optmat.2023.114123.
5. El Khouja O., Negrila C. C., Nouneh K., Secu M., Ebn Touhami M., Matei E., et al. (2022) Bulk and Surface Characteristics of Co-Electrodeposited Cu2FeSnS4 Thin Films Sulfurized at Different Annealing Temperatures. Journal of Alloys and Compounds. 906. https://doi.org/10.1016/j.jallcom.2022.164379.
6. Salla J. S., Silvestri S., de Moraes Flores E. M., Foletto E. L. (2018) A Novel Application of Cu2FeSnS4 Particles Prepared by Solvothermal Route as Solar Photo-Fenton Catalyst. Materials Letters. 228, 160–163. https://doi.org/10.1016/j.matlet.2018.06.004.
7. Dhiman V., Kumar S., Kaur M., Sharma R., Chandel T., Bhardwaj D., et al. (2023) Synergistic Effect of Stirring and Marigold Shaped Cu2FeSnS4 Nanostructure for the Enhanced Performance of Rhodamine B Degradation Under Visible Light. Inorganic Chemistry Communications. 154. https://doi.org/10.1016/j.inoche.2023.110923.
8. Sahoo M. K., Gusain M., Thangriyal S., Nagarajan R., Ranga Rao G. (2020) Energy Storage Study of Trimetallic Cu2MSnS4 (M: Fe, Co, Ni) Nanomaterials Prepared by Sequential Crystallization Method. Journal of Solid State Chemistry. 282. https://doi.org/10.1016/j.jssc.2019.121049.
9. Inamdar A. I., Salunke A. S., Hou B., Shrestha N. K., Im H., Kim H. (2023) Highly Durable and Sustainable Copper-Iron-Tin-Sulphide (Cu2FeSnS4) Anode for Li-Ion Batteries: Effect of Operating Temperatures. Dalton Transactions. 34 (52), 12020–12029. https://doi.org/10.1039/D3DT01338C.
10. Quintero M., Moreno E., Alvarez S., Marquina J., Rincón C., Quintero E., et al. (2014) Lattice Parameter Values and Phase Transitions for the Cu2-II-IV-S4(Se4) (II=Mn, Fe, Co; IV=Si, Ge, Sn) Magnetic Semiconductor Compounds. Revista Latinoamericana de Metalurgia y Materiales. 34 (1), 28–38.
11. Zhou B., Yan X., Li P., Yang L., Yu D. (2015) Raman Spectroscopy as a Superior Tool to Understand the Synthetic Pathway of Cu2FeSnS4 Nanoparticles. European Journal of Inorganic Chemistry. 16, 2690–2694. https://doi.org/10.1002/ejic.201500189.
12. Ahmadi S., Khemiri N., Cantarero A., Kanzari M. (2024) Effect of Calcination on the Structural, Morphological and Optical Properties of Earth Abundant Cu2FeSnS4 Powders Prepared by Solid-State Reaction. Journal of Solid State Chemistry. 339. https://doi.org/10.1016/j.jssc.2024.124969.
13. Quintero M., Barreto A., Grima P., Tovar R., Quintero E., Sánchez Porras G., et al. (1999) Crystallographic Properties of I2-Fe-IV-VI4 Magnetic Semiconductor Compounds. Materials Research Bulletin. 34 (14–15), 2263–2270. https://doi.org/10.1016/S0025-5408(00)00166-5.
14. Lindemann F. (1910) About the Сalculation of Molecular Own Frequencies. Physical Magazine. 11 (14), 609–612.
15. Sánchez Porras G., Quintero M., Wasim. S. M. (1990) Journal of Applied Physics Electrical Properties of (CuIn)1−zMn2zTe2 Alloys. Applied Physics. 67 (7), 3382–3386. https://doi.org/10.1063/1.345349
Review
For citations:
Khoroshko V.V., Osmolovskaya T.N., Stanchik A.V., Pugach N.G., Doroshkevich A.S., Radyush Yu.V., Kuzmar I.I., Loska A.U. Semiconductor Solid Solutions Cu2FeSn(Sx,Se1–x)4: Synthesis, Structural Properties, State Diagram. Doklady BGUIR. 2025;23(5):27-34. (In Russ.) https://doi.org/10.35596/1729-7648-2025-23-5-27-34























