Preview

Doklady BGUIR

Advanced search

Characteristics of Solar Panel Stability Under Operating Conditions

https://doi.org/10.35596/1729-7648-2025-23-2-61-69

Abstract

The article considers the application of a two-diode physical and mathematical model in the analysis of telemetry data of solar panels using digital twins to monitor the efficiency of solar power plants. This approach made it possible to replace the temporary data of each solar panel’s operation during a month with data from seven output electrophysical parameters. This simplified data processing: one solar panel – one set of parameters per month. Analysis of telemetry data using digital twins allows using them to calculate normalized values of the output electric power at the point of maximum electricity generation for all solar panels and, based on the results, to find anomalies in their operation. Using the example of a solar power plant consisting of 272 panels, the possibility of effectively identifying abnormally operating solar panels is shown.

About the Authors

K. S. Dzik
Belarusian State University of Informatics and Radioelectronics
Belarus

Kanstantin S. Dzik, Postgraduate at the Department of Informatics

220018, Minsk, Yakubovskogo St., 15-1-358



I. V. Gasenkova
State Scientific and Production Association “Optics, Optoelectronics, and Laser Technology”
Belarus

Irina V. Gasenkova, Dr. Sci. (Phys. and Math.), Associate Professor, Leading Researcher

Minsk



References

1. World Energy Outlook 2024. Available: https://www.iea.org/reports/world-energy-outlook-2024 (Accessed 24 May 2024).

2. New Energy Outlook 2024. Available: https://about.bnef.com/new-energy-outlook/#exec-summary (Accessed 24 May 2024).

3. Wikimedia Commons. File: Best Research-Cell Efficiencies.png. Available: https://commons.wikimedia.org/ wiki/File:Best_Research-Cell_Efficiencies.png (Accessed 20 February 2018).

4. Meflah, A., Rahmoun K., Mahrane A., Chikh M. (2017) Outdoor Performance Modeling of Three Different Silicon Photovoltaic Module Technologies. International Journal of Energy and Environmental Engineering. 8, 143–152.

5. Nguyen X. H., Nguyen M. P. (2015) Mathematical Modeling of Photovoltaic Cell/module/arrays with Tags in Matlab/Simulink. Environmental Systems Research. 4 (24), 24–32.

6. Cotal H., Fetzer C., Boisvert J., Kinsey G., King R., Hebert P., et al. (2009) III–V Multijunction Solar Cells for Concentrating Photovoltaics. Energy & Environmental Science. 2 (2), 174–192.

7. Barnham K. W. J., Bushnell D. B., Connolly J. P., Ekins-Daukes N. J., Kluftinger B. G., Mazzer M., et al. (2001) High Efficiency III–V Solar Cells. International School on Crystal Growing of Materials for Energy Production and Energy-Saving Applications, Conference Proceedings.

8. Smith M. A., Sinharoy S., Weizer V. G., Khan O., Pal A.-M., Clark E. B., et al. (2000) Solar Cell for NASA RAINBOW Concentrator. Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, Proceedings of the Conference. 1139–1151.

9. Fan J. C. C., Bozler C. O., McClelland R. W. (1981) Thin-Film GaAs Solar Cells. 15th IEEE Photovoltaic Specialists Conference, Kissimmee, Florida, May 12–15, 1981, Conference Record. New York. 375–377.

10. Milichko V. A., Shalin A. S., Mukhin I. S., Kovrov A. E., Krasilin A. A., Vinogradov A. V., et al. (2016) Solar Photovoltaics: Current State and Trends. Physics–Uspekhi. (186), 801–852 (in Russian).

11. Reinhard P., Bissig B., Pianezzi F., Avancini E., Hagendorfer H., Keller D., et al. (2015) Features of KF and NaF Postdeposition Treatments of Cu(In,Ga)Se2 Absorbers for High Efficiency Thin Film Solar Cells. Chemistry of Materials. 27 (16), 5755–5764.

12. Bonnet D., Meyers P. (1998) Cadmium-Telluride – Material for Thin Film Solar Cells. Journal of Materials Research. 13, 2740–2753.

13. Liu Y., Hong Z., Chen Qi, Chang W., Zhou H., Song T.-B., et al. (2015) Integrated Perovskite/BulkHeterojunction Toward Efficient Solar Cells. Nano Letters. 15 (1), 662–668. https://doi.org/10.1021/nl504168q.

14. Snaith H. J. (2013) Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters. 4 (21), 3623–3630.

15. Turkay D., Artuk K., Chin X.-Yu, Jacobs D., Moon S.-J., Walter A., et al. (2024) Synergetic Substrate and Additive Engineering for Over 30%-Efficient Perovskite-Si Tandem Solar Cells. Joule. 8 (6), 1735–1753.

16. Ahmad J., Ciocia A., Fichera S., Murtaza A. F., Spertino F. (2019) Detection of Typical Defects in Silicon Photovoltaic Modules and Application for Plants with Distributed MPPT Configuration. Energies. 12 (23), 4547−4573.

17. Groenew А., Bakker J., Hofer J., Nagy Z., Schlüter A. (2016) Methods for Modelling and Analysis of Bendable Photovoltaic Modules on Irregularly Curved Surfaces. International Journal of Energy and Environmental Engineering. 7, 261–271.

18. Vаlevich S. V., Osipovich V. S., Kruse I., Asimov R. M. (2020) Information Support for Monitoring of Solar Power Station’s Technical State. Information Technologies. 26 (10), 594–601. DOI: 10.17587/it.26.594-601 (in Russian).

19. Dzik K. S. (2023) A Method for Searching for Defective Solar Panels in Telemetry Data of a Power Plant Based on the Results of a Digital Twin. Doklady BGUIR. 21 (6), 113–120. http://dx.doi.org/10.35596/1729-7648-2023-21-6-113-120 (in Russian).


Review

For citations:


Dzik K.S., Gasenkova I.V. Characteristics of Solar Panel Stability Under Operating Conditions. Doklady BGUIR. 2025;23(2):61-69. (In Russ.) https://doi.org/10.35596/1729-7648-2025-23-2-61-69

Views: 131


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)