1. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Film. Science. 306, 666-669.
2. Morozov S. V., Novoselov K. S., Katsnelson M. I., Schedin F., Elias D. C., Jaszczak J. A., et al. (2008) Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters. 100.
3. Bardeen J., Shockley W. (1950) Deformation Potentials and Mobilities in Nonpolar Crystals. Physical Review. 80. https://doi.org/10.1103/PhysRev.80.72.
4. Herring C., Vogt E. (1956) Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering. Physical Review. 101.
5. Frӧhlich H. (1954) Electrons in Lattice Fields. Advances in Physics. 3.
6. Hess K. (1999) Advanced Theory of Semiconductor Devices. NJ, Wiley-IEEE Press, Piscataway.
7. Lundstrom M. (2009) Fundamentals of Carrier Transport. UK, Cambridge University Press, Cambridge.
8. Poncé S., Margine E. R., Verdi C., Giustino F. (2016) EPW: Electron-Phonon Coupling, Transport and Superconducting Properties Using Maximally Localized Wannier Functions. Computer Physics Communications. 209.
9. Zhou J.-J., Park J., Lu I-Te, Maliyov I., Tong X., Bernardi M. (2021) Perturbo: A Software Package for ab Initio Electron-Phonon Interactions, Charge Transport and Ultrafast Dynamics. Computer Physics Communications. 264.
10. Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., et al. (2009) QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. Journal of Physics: Condensed Matter. 21 (39).
11. Noffsinger Jesse, Giustino Feliciano, Malone Brad D., Cheol-Hwan Park, Louie Steven G., Cohen Marvin L. (2010) EPW: A Program for Calculating the Electron-Phonon Coupling Using Maximally Localized Wannier Functions. Computer Physics Communications. 181 (12), 2140-2148.
12. Lee H., Poncé S., Bushick K., Hajinazar S., Lafuente-Bartolome J., Leveillee J., et al. (2023) Electron-Phonon Physics from First Principles Using the EPW Code. npj Computational Materials. 9.
13. Hamann D. R. (2013) Optimized Norm-Conserving Vanderbilt Pseudopotentials. Physical Review. B 88.
14. Mishchanka V. N. (2024) First-Principles Modeling of Electron-Phonon Scattering Rates in Graphene. Modern Electronic Materials. 10 (3), 177-184.
15. Bernardi M., Vigil-Fowler D., Lischner J., Neaton J. B., Louie S. G. (2014) Ab Initio Study of Hot Carriers in the First Picosecond after Sunlight Absorption in Silicon. Physical Review Letters. 112.
16. Long Cheng, Chenmu Zhang and Yuanyue Liu (2019) How to Resolve a Phonon-Associated Property into Contributions of Basic Phonon Modes. Journal of Physics: Materials. 2 (4).
17. Isakova O. P., Tarasevich Y. Y., Yuzyuk Y. I. (2009) Processing and Visualization of Data from Physical Experiments Using Origin Package. Moscow, LIB-COM Book House.