Preview

Doklady BGUIR

Advanced search

Doping on the Dielectric Properties of Hafnium Oxide Films

https://doi.org/10.35596/1729-7648-2025-23-2-12-19

Abstract

A comparison of the dielectric characteristics (relative permittivity, dielectric loss tangent, band gap, leakage current and breakdown voltage) of hafnium and hafnium-zirconium oxide films was carried out. It is shown that pulsed reactive magnetron sputtering of a Hf target in an Ar/O2 working gas environment can be used to obtain HfOx films with a relative permittivity of e = 12.5–16.0 and e = 12.0–14.0 at frequencies of F = 1 kHz and F = 1 MHz, respectively, with a dielectric loss tangent of tga = 0.012–0.022 (F = 1 kHz) and tga = 0.053–0.062 (F = 1 MHz), a leakage current density of JL = (1.0–3.0) × 10–3 A/m2 at an electric field strength of E = 5 × 107 V/m, with a band gap of Eg = 5.85–5.87 eV and a breakdown field strength of Ebr = (2.1–2.4) × 108 V/m. Doping of hafnium oxide with zirconium (40 at.%) made it possible to reduce the dielectric loss tangent to 0.008–0.012 (F = 1 kHz) and to 0.04–0.05 (F = 1 MHz), the leakage current density to (3–5) × 10–5 A/m2, and increase the breakdown voltage to (2.5–3.0) × 108 V/m. At the same time, a slight increase in the relative permittivity of the films to 14–16 was observed at frequencies of 1 kHz and 1 MHz due to a decrease in frequency dispersion from 1.15 to values less than 1.10 and an increase in Eg to 5.86–5.89 eV.

About the Authors

D. A. Golosov
Belarusian State University of Informatics and Radioelectronics
Belarus

Dmitriy A. Golosov, Сand. Sci. (Tech.), Associate Professor, Leading Researcher at the Center “Ion Plasma Systems and Technologies” (Center 2.1

220013, Minsk, P. Brovki St., 6 



J. Zhang
Xi’an Technologiсal University
China

Jin Zhang, Сand. Sci. (Tech.), Researcher at the Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test

Xi’an



S. M. Zavadski
Belarusian State University of Informatics and Radioelectronics
Belarus

Sergey M. Zavadski, Сand. Sci. (Tech.), Associate Professor, Head of the Center 2.1

Minsk



S. N. Melnikov
Belarusian State University of Informatics and Radioelectronics
Belarus

Sergey N. Melnikov, Сand. Sci. (Tech.), Leading Researcher at the Center 2.1

Minsk



H. T. Doan
Vietnam People’s Naval Academy
Viet Nam

Hoang T. Doan, Сand. Sci. (Tech.), Head of the Department of Information Technology

Nha Trang



P. A. Alexandrovitch
Belarusian State University of Informatics and Radioelectronics
Belarus

Pavel A. Alexandrovitch, Student

Minsk



References

1. Zagni N., Puglisi F. M., Pavan P., Alam M. A. (2023) Reliability of HfO2-Based Ferroelectric FETs: A Critical Review of Current and Future Challenges. Proceedings of the IEEE. 111 (2), 158–184.

2. Jones M. N., Kwon Y. W., Norton D. P. (2005) Dielectric Constant and Current Transport for HfO2 Thin Films on ITO. Applied Physics A: Materials Science and Processing. 81 (2), 285–288.

3. Zhang H. H., Ma C. Y., Zhang Q. Y. (2009) Scaling Behavior and Structure Transition of ZrO2 Films Deposited by RF Magnetron Sputtering. Vacuum. 83 (11), 1311–1316.

4. Choi W. J., Lee E. J., Yoon K. S., Yang J. Y., Lee J. H., Kim C. O., et al. (2004) Annealing Effects of HfO2 Gate Thin Films Formed by Inductively Coupled Sputtering Technique at Room Temperature. Journal of the Korean Physical Society. 45, S716–S719.

5. Mikhelashvili V., Brener R., Kreinin O., Meyler B., Shneider J., Eisenstein G. (2004) Characteristics of Metal-Insulator-Semiconductor Capacitors Based on High-k HfAlO Dielectric Films Obtained by Low-Temperature Electron-Beam Gun Evaporation. Applied Physics Letters. 85, 5950–5952.

6. Li F. M., Bayer B. C., Hofmann S., Dutson J. D., Wakeham S. J., Thwaites M. J., et al. (2011) High-k (k = 30) Amorphous Hafnium Oxide Films from High Rate Room Temperature Deposition. Applied Physics Letters. 98.

7. Zhao X., Vanderbilt D. (2002) First-Principles Study of Structural, Vibrational, and Lattice Dielectric Properties of Hafnium Oxide. Physical Review. 65.

8. Kim S. J., Mohan J., Summerfelt S. R., Kim J. (2019) Ferroelectric thin Hf0.5Zr0.5O2 films: A review of Recent Advances. JOM. 71, 246–255.

9. Schroeder U., Materano M., Mittmann T., Lomenzo P. D., Mikolajick T., Toriumi A. (2019) Recent Progress for Obtaining the Ferroelectric Phase in Hafnium Oxide Based Films Impact of Oxygen and Zirconium. Japanese Journal of Applied Physics. 58.

10. Kumar J., Birla S., Agarwal G. (2023) A Review on Effect of Various High-K Dielectric Materials on the Performance of FinFET Device. Materials Today Proceedings. 79 (2), 297–302.

11. Kim S. E., Sung J. Y., Yun Y., Jeon B., Moon S. M., Lee H. B., et al. (2024) Atomic Layer Deposition of High-K and Metal Thin Films for High-Performance DRAM Capacitors: A Brief Review. Current Applied Physics. 64, 8–15.

12. Jeon S., Yang H., Park D.-G., Hwang H. (2002) Electrical and Structural Properties of Nanolaminate (Al2O3/ ZrO2/Al2O3) for Metal Oxide Semiconductor Gate Dielectric Applications. Japanese Journal of Applied Physics. 41 (4S), 2390–2393.

13. Wong H., Iwai H. (2006) On the Scaling Issues and High-κ Replacement of Ultrathin Gate Dielectrics for Nanoscale MOS Transistors. Microelectronic Engineering. 83 (10), 1867–1904.

14. Bӧscke T. S., Müller J., Bräuhaus D., Schrӧder U., Bӧttger U. (2011) Ferroelectricity in Hafnium Oxide Thin Films. Applied Physics Letters. 99, 102903-1–102903-3.

15. Nakano J., Miyazaki H., Kimura T., Goto T., Zhang S. (2004) Thermal Conductivity of Yttria-Stabilized Zircon


Review

For citations:


Golosov D.A., Zhang J., Zavadski S.M., Melnikov S.N., Doan H.T., Alexandrovitch P.A. Doping on the Dielectric Properties of Hafnium Oxide Films. Doklady BGUIR. 2025;23(2):12-19. https://doi.org/10.35596/1729-7648-2025-23-2-12-19

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)