Doping on the Dielectric Properties of Hafnium Oxide Films
https://doi.org/10.35596/1729-7648-2025-23-2-12-19
Abstract
A comparison of the dielectric characteristics (relative permittivity, dielectric loss tangent, band gap, leakage current and breakdown voltage) of hafnium and hafnium-zirconium oxide films was carried out. It is shown that pulsed reactive magnetron sputtering of a Hf target in an Ar/O2 working gas environment can be used to obtain HfOx films with a relative permittivity of e = 12.5–16.0 and e = 12.0–14.0 at frequencies of F = 1 kHz and F = 1 MHz, respectively, with a dielectric loss tangent of tga = 0.012–0.022 (F = 1 kHz) and tga = 0.053–0.062 (F = 1 MHz), a leakage current density of JL = (1.0–3.0) × 10–3 A/m2 at an electric field strength of E = 5 × 107 V/m, with a band gap of Eg = 5.85–5.87 eV and a breakdown field strength of Ebr = (2.1–2.4) × 108 V/m. Doping of hafnium oxide with zirconium (40 at.%) made it possible to reduce the dielectric loss tangent to 0.008–0.012 (F = 1 kHz) and to 0.04–0.05 (F = 1 MHz), the leakage current density to (3–5) × 10–5 A/m2, and increase the breakdown voltage to (2.5–3.0) × 108 V/m. At the same time, a slight increase in the relative permittivity of the films to 14–16 was observed at frequencies of 1 kHz and 1 MHz due to a decrease in frequency dispersion from 1.15 to values less than 1.10 and an increase in Eg to 5.86–5.89 eV.
About the Authors
D. A. GolosovBelarus
Dmitriy A. Golosov, Сand. Sci. (Tech.), Associate Professor, Leading Researcher at the Center “Ion Plasma Systems and Technologies” (Center 2.1
220013, Minsk, P. Brovki St., 6
J. Zhang
China
Jin Zhang, Сand. Sci. (Tech.), Researcher at the Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test
Xi’an
S. M. Zavadski
Belarus
Sergey M. Zavadski, Сand. Sci. (Tech.), Associate Professor, Head of the Center 2.1
Minsk
S. N. Melnikov
Belarus
Sergey N. Melnikov, Сand. Sci. (Tech.), Leading Researcher at the Center 2.1
Minsk
H. T. Doan
Viet Nam
Hoang T. Doan, Сand. Sci. (Tech.), Head of the Department of Information Technology
Nha Trang
P. A. Alexandrovitch
Belarus
Pavel A. Alexandrovitch, Student
Minsk
References
1. Zagni N., Puglisi F. M., Pavan P., Alam M. A. (2023) Reliability of HfO2-Based Ferroelectric FETs: A Critical Review of Current and Future Challenges. Proceedings of the IEEE. 111 (2), 158–184.
2. Jones M. N., Kwon Y. W., Norton D. P. (2005) Dielectric Constant and Current Transport for HfO2 Thin Films on ITO. Applied Physics A: Materials Science and Processing. 81 (2), 285–288.
3. Zhang H. H., Ma C. Y., Zhang Q. Y. (2009) Scaling Behavior and Structure Transition of ZrO2 Films Deposited by RF Magnetron Sputtering. Vacuum. 83 (11), 1311–1316.
4. Choi W. J., Lee E. J., Yoon K. S., Yang J. Y., Lee J. H., Kim C. O., et al. (2004) Annealing Effects of HfO2 Gate Thin Films Formed by Inductively Coupled Sputtering Technique at Room Temperature. Journal of the Korean Physical Society. 45, S716–S719.
5. Mikhelashvili V., Brener R., Kreinin O., Meyler B., Shneider J., Eisenstein G. (2004) Characteristics of Metal-Insulator-Semiconductor Capacitors Based on High-k HfAlO Dielectric Films Obtained by Low-Temperature Electron-Beam Gun Evaporation. Applied Physics Letters. 85, 5950–5952.
6. Li F. M., Bayer B. C., Hofmann S., Dutson J. D., Wakeham S. J., Thwaites M. J., et al. (2011) High-k (k = 30) Amorphous Hafnium Oxide Films from High Rate Room Temperature Deposition. Applied Physics Letters. 98.
7. Zhao X., Vanderbilt D. (2002) First-Principles Study of Structural, Vibrational, and Lattice Dielectric Properties of Hafnium Oxide. Physical Review. 65.
8. Kim S. J., Mohan J., Summerfelt S. R., Kim J. (2019) Ferroelectric thin Hf0.5Zr0.5O2 films: A review of Recent Advances. JOM. 71, 246–255.
9. Schroeder U., Materano M., Mittmann T., Lomenzo P. D., Mikolajick T., Toriumi A. (2019) Recent Progress for Obtaining the Ferroelectric Phase in Hafnium Oxide Based Films Impact of Oxygen and Zirconium. Japanese Journal of Applied Physics. 58.
10. Kumar J., Birla S., Agarwal G. (2023) A Review on Effect of Various High-K Dielectric Materials on the Performance of FinFET Device. Materials Today Proceedings. 79 (2), 297–302.
11. Kim S. E., Sung J. Y., Yun Y., Jeon B., Moon S. M., Lee H. B., et al. (2024) Atomic Layer Deposition of High-K and Metal Thin Films for High-Performance DRAM Capacitors: A Brief Review. Current Applied Physics. 64, 8–15.
12. Jeon S., Yang H., Park D.-G., Hwang H. (2002) Electrical and Structural Properties of Nanolaminate (Al2O3/ ZrO2/Al2O3) for Metal Oxide Semiconductor Gate Dielectric Applications. Japanese Journal of Applied Physics. 41 (4S), 2390–2393.
13. Wong H., Iwai H. (2006) On the Scaling Issues and High-κ Replacement of Ultrathin Gate Dielectrics for Nanoscale MOS Transistors. Microelectronic Engineering. 83 (10), 1867–1904.
14. Bӧscke T. S., Müller J., Bräuhaus D., Schrӧder U., Bӧttger U. (2011) Ferroelectricity in Hafnium Oxide Thin Films. Applied Physics Letters. 99, 102903-1–102903-3.
15. Nakano J., Miyazaki H., Kimura T., Goto T., Zhang S. (2004) Thermal Conductivity of Yttria-Stabilized Zircon
Review
For citations:
Golosov D.A., Zhang J., Zavadski S.M., Melnikov S.N., Doan H.T., Alexandrovitch P.A. Doping on the Dielectric Properties of Hafnium Oxide Films. Doklady BGUIR. 2025;23(2):12-19. https://doi.org/10.35596/1729-7648-2025-23-2-12-19