Multi-Branch Convolutional Neural Network Architecture for Glaucoma Diagnosis Using Optical Coherence Tomography Biomarkers and Synthetic Image Simulation
https://doi.org/10.35596/1729-7648-2025-23-1-74-82
Abstract
This paper presents a multi-branch convolutional neural network designed for glaucoma diagnosis using optical coherence tomography biomarkers and synthetic image simulations. The network includes six branches, each targeting key anatomical features. Trained on a synthetic dataset, the model achieved a validation accuracy of 94.2 % and a training loss of 0.162, demonstrating effectiveness in distinguishing between different glaucoma types. The results also highlight the potential for further accuracy improvement, particularly in reducing classification errors between closely related conditions.
Keywords
About the Authors
Ph. V. UsenkoBelarus
Postgraduate at the Engineering Psychology and Ergonomics Department
Minsk
A. M. Prudnik
Belarus
Prudnik Aleksander Mikhailovich, Cand. of Sci., Associate Professor, Associate Professor at the Engineering Psychology and Ergonomics Department
220013, Minsk, P. Brovki St., 6
References
1. World Health Organization (2024) ICD-11 for Mortality and Morbidity Statistics. https://icd.who.int/browse/2024-01/mms/en#499924848.
2. Weinreb R. N., Aung T., Medeiros F. A. (2016) The Pathophysiology and Treatment of Glaucoma: A Review. JAMA. DOI: 10.1001/jama.2016.4697.
3. Caprioli J., Coleman A. L. (2017) Intraocular Pressure Fluctuation: A Risk Factor for Visual Field Progression at Low Intraocular Pressures in the Advanced Glaucoma Intervention Study. Ophthalmology. DOI: 10.1016/j.ophtha.2008.10.013.
4. Chan K., Lee T. W., Sample P. A., Goldbaum M. H. (2019) AI and Glaucoma. Progress in Retinal and Eye Research. DOI: 10.1016/j.preteyeres.2018.07.004.
5. Medeiros F. A., Jammal A. A., Thompson A. C. (2018) From Data to Diagnosis: New Techniques for Machine Learning and Image Analysis. British Journal of Ophthalmology. DOI: 10.1136/bjophthalmol-2018-312068.
6. Leung C. K., Cheung C. Y.-L., Weinreb R. N., Qiu Q., Liu Shu, Li H., et al. (2012) Retinal Nerve Fiber Layer Imaging with Spectral-Domain Optical Coherence Tomography: A Variability and Diagnostic Performance Study. Ophthalmology. DOI: 10.1016/j.ophtha.2011.12.030.
7. Quigley H. A., McCormick T. A., Nicolela M. T., LeBlanc R. P. (2015) Optic Disc and Visual Field Changes in a Prospective Longitudinal Study of Patients with Glaucoma. Archives of Ophthalmology. DOI: 10.1001/archopht.1996.01100130104019.
8. Wollstein G., Schuman J. S., Price L. L., Aydin A., Stark P. C., Hertzmark E., et al. (2011) Optical Coherence Tomography Longitudinal Evaluation of Retinal Nerve Fiber Layer Thickness in Glaucoma. Archives of Ophthalmology. DOI: 10.1001/archophthalmol.2011.73.
9. Hood D. C., Raza A. S. (2011) Method for Comparing Visual Field Defects to Local RNFL and RGC Damage Seen on Frequency Domain OCT in Patients with Glaucoma. Biomed Opt. Express. 2 (5), 1097–1105. DOI: 10.1364/BOE.2.001097.
10. Killer H. E., Pircher A. (2018) Normal Tension Glaucoma: Review of Current Understanding And Mechanisms of the Pathogenesis. Eye. 32 (5), 924–930. DOI: 10.1038/s41433-018-0042-2.
11. Tan O., Chopra V., Lu A. T.-H., Schuman J. S., Ishikawa H., Wollstein G., et al. (2009) Detection of Macular Ganglion Cell Loss in Glaucoma by Fourier-Domain Optical Coherence Tomography. Ophthalmology. DOI: 10.1016/j.ophtha.2009.05.025.
12. Anderson D. R., Drance S. M., Schulzer M. (2001) Natural History of Normal-Tension Glaucoma. Ophthalmology. DOI: 10.1016/S0161-6420(00)00564-9.
13. Bussel I. I., Wollstein G., Schuman J. S. (2014) OCT for Glaucoma Diagnosis, Screening and Detection of Glaucoma Progression. British Journal of Ophthalmology. 98, ii15–ii19. DOI: 10.1136/bjophthalmol-2013-304326.
14. Hood D. C., Fortune B., Arthur S. N., Xing D., Salant J. A., Ritch R., et al. (2017) Blood Vessel Contributions to Retinal Nerve Fiber Layer Thickness Profiles Measured with Optical Coherence Tomography. Journal of Glaucoma. 17 (7), 519–528. DOI: 10.1097/IJG.0b013e3181629a02.
15. Jonas J. B., Aung T., Bourne R. R., Bron A. M., Ritch R., Panda-Jonas S. (2018) Glaucoma. Lancet. 391 (10108), 2183–2193. DOI: 10.1016/S0140-6736(17)31469-1.
16. Quigley H. A., Hohman R. M., Addicks E. M., Massof R. W., Green W. R. (2019) Morphologic Changes in the Lamina Cribrosa Correlated with Neural Loss in Open-Angle Glaucoma. American Journal of Ophthalmology. 95 (5), 673–691. DOI: 10.1016/0002-9394(83)90389-6.
17. Budenz D. L., Anderson D. R., Varma R., Schuman J., Cantor L., Savell J., et al. (2007) Determinants of Normal Retinal Nerve Fiber Layer Thickness Measured by Stratus OCT. Ophthalmology. 114 (6), 1046–1052. DOI: 10.1016/j.ophtha.2006.08.046.
18. Liu D., Li Z., Zhang X., Zhao L., Jia J., Sun F., et al. (2017) Assessment of Intracranial Pressure with Ultrasonographic Retrobulbar Optic Nerve Sheath Diameter Measurement. BMC Neurology. 17 (1). DOI: 10.1186/s12883-017-0964-5.
19. Drexler W., Fujimoto J. G. (2008) Optical Coherence Tomography: Technology and Applications. Springer.
20. Prudnik A., Usenko P. (2025) Synthetic OCT Glaucoma Dataset. Kaggle. https://doi.org/10.34740/KAGGLE/DS/6470196.
Review
For citations:
Usenko P.V., Prudnik A.M. Multi-Branch Convolutional Neural Network Architecture for Glaucoma Diagnosis Using Optical Coherence Tomography Biomarkers and Synthetic Image Simulation. Doklady BGUIR. 2025;23(1):74-82. https://doi.org/10.35596/1729-7648-2025-23-1-74-82