1. Raghavendra U., Acharya U. R., Adeli H. (2019) Artificial Intelligence Techniques for Automated Diagnosis of Neurological Disorders. European Neurology. 82 (1-3), 41-64.
2. Armstrong M. J., Michael S. O. (2020) Diagnosis and Treatment of Parkinson Disease: A Review. Jama. 323 (6), 548-560.
3. Becker G., Müller A., Braune S., Büttner T., Benecke R., Greulich W., et al. (2002) Early Diagnosis of Parkinson’s Disease. Journal of Neurology. 249, iii40-iii48.
4. Agarwal A., Chandrayan S., Sahu S. S. (2016) Prediction of Parkinson’s Disease Using Speech Signal with Extreme Learning Machine. 2016 International Conference on Electrical, Electronics, and Optimization Techniques. 3776-3779.
5. Blahuta J., Soukup T., Martinu J. (2017) An Expert System Based on Using Artificial Neural Network and Region-Based Image Processing to Recognition Substantia Nigra and Atherosclerotic Plaques in B-Images: A Prospective Study. Advances in Computational Intelligence, 14th International Work-Conference on Artificial Neural Networks, Cadiz, Spain, June 14-16, Part I. Springer International Publ. 236-245.
6. Carcagnì P., Leo M., Del Coco M., Distante C., De Salve A. (2023) Convolution Neural Networks and Self-Attention Learners for Alzheimer Dementia Diagnosis from brain MRI. Sensors. 23 (3).
7. Chen W., Xing X., Xu X., Pang J., Du L. (2023) SpeechFormer++: A Hierarchical Efficient Framework for Paralinguistic Speech Processing. arXiv:2302.14638v1. 31, 775-788.
8. Pan Y., Mirheidari B., Harris J. M., Thompson J. C., Jones M., Snowden J. S., et al. (2021) Using the Outputs of Different Automatic Speech Recognition Paradigms for Acoustic- and BERT-Based Alzheimer’s Dementia Detection Through Spontaneous Speech. Interspeech. 3810-3814.
9. Moravveji S., Doyon N., Mashreghi J., Duchesne S. (2024) A Scoping Review of Mathematical Models Covering Alzheimer’s Disease Progression. Frontiers in Neuroinformatics. 18.
10. Vishniakou U. A., Yu Chu Yue (2023) Using Machine Learning for Recognition of Alzheimer’s Disease Based on Transcription Information. Doklady BGUIR. 21 (6), 106-112. https://doi.org/10.35596/1729-7648-202321-6-106-112.
11. Vishniakou U. A., YiWei Xia, Chuyue Yu (2023) Technology of Neurological Disease Recognition Using Gated Recurrent Unite Neural Network and Internet of Things. OSTES Research Papers Collection. Minsk, Belarusian State University of Informatics and Radioelectronics. 241-246.
12. Luz S., Haider F., de la Fuente S., Fromm D., MacWhinney B. (2004) Alzheimer’s Dementia Recognition Through Spontaneous Speech: The ADReSS Challenge. arXiv:2004.06833.
13. Haulcy R., Glass J. (2021) Classifying Alzheimer’s Disease Using Audio and Text-Based Representations of Speech. Frontiers in Psychology. 11.
14. Sakar C. O., Serbes G., Gunduz A., Tunc H. C., Nizam H., Sakar B. E., et al. (2019) A Comparative Analysis of Speech Signal Processing Algorithms for Parkinson’s Disease Classification and the Use of the Tunable Q-factor Wavelet Transform. Applied Soft Computing. 74, 255-263.
15. Vishniakou U. A., YiWei Xia (2023) IT Diagnostics of Parkinson’s Disease Based on the Analysis of Voice Markers and Machine Learning. Doklady BGUIR. 21 (3), 102-110. https://doi.org/10.35596/1729-76482023-21-3-102-110.