Parameters of Anodic Alumina Determined from Fabry – Perot Oscillations in Specular Reflection Spectra
https://doi.org/10.35596/1729-7648-2024-22-6-14-20
Abstract
The Fabry – Perot oscillations in specular reflection spectra in the visible wavelength range depending on the anodic alumina thickness have been investigated. The anodic alumina was formed in 1.0 M H2SO4 aqueous solution with the 1:1 water to ethylene glycol solution additive. The oxides fabrication conditions have been established whose reflection spectra were characterized by high intensity of oscillations to be used in sensor structures. Using these optical oscillations data, the anodic alumina effective refractive indices have been calculated; the increase by 0.04 has been revealed in the isopropyl alcohol solution compared to the air medium for the 2 to 5 micrometer thick samples. The ability to determine the anodic alumina porosity using the Fabry – Perot oscillation shift in the different refractive indices media has been shown. A good agreement between the porosity values obtained from the reflection spectra calculations and the electron microscopic images has been established.
About the Authors
I. V. GasenkovaBelarus
Gasenkova I. V., Dr. of Sci. (Phys. and Math.), Associate Professor, Leading Researcher
Minsk
N. I. Mukhurov
Belarus
Mukhurov Nikolai Ivanovich, Dr. of Sci. (Tech.), Professor, Head of the Laboratory
220090, Minsk, Logoiskii Trakt, 22
Tel.: +375 17 242-32-30
I. M. Andrukhovich
Belarus
Andrukhovich I. M., Сand. of Sci., Senior Researcher
Minsk
References
1. Ferre-Borrull J., Xifré-Pérez E., Pallares J., Marsal L. (2015) Optical Properties of Nanoporous Anodic Alumina and Derived Applications. Springer Series in Materials Science. 219, 185–217. http://dx.doi.org/10.1007/978-3-319-20334-8_6.
2. Acosta Capilla L., Berto-Rosello F., Xifré-Pérez E., Santos A., Ferre-Borrull J., Marsal L. (2019) Filters with Tunable Multispectral Photonic Stopbands as Sensing Platforms. ACS Appl. Mater. Interfaces. 11 (3), 3360–3371. http://dx.doi.org/10.1021/acsami.8b19411.
3. Choudhari K. S., Suresh D. Kulkarni, Unnikrishnan V. K., Rajeev K. Sinha, Santhosh C., Sajan D. George (2019) Optical Characterizations of Nanoporous Anodic Alumina for Thickness Measurements Using Interference Oscillations. Nano-Structures & Nano-Objects. 19. http://dx.doi.org/10.1016/j.nanoso.2019.100354.
4. Xu W. L., Chen H., Zheng M. J., Ding G. Q., Shen W. Z. (2006) Optical Transmission Spectra of Ordered Porous Alumina Membranes with Different Thicknesses and Porosities. Opt. Mater. 28, 1160–1165. http://dx.doi.org/10.1016/j.optmat.2005.07.003.
5. Trivinho-Strixino F., Guerreio H. A., Gomes C. S., Pereira E. C., Guimaraes F. E. G. (2010) Active Waveguide Effects from Porous Anodic Alumina: An Optical Sensor Proposition. Appl. Phys. Lett. 97, 011902–011904. http://dx.doi.org/10.1063/1.3447375.
6. Kant K., Low S. P., Marshal A., Shapter J. G., Losic D. (2010) Nanopore Gradients on Porous Aluminum Oxide Generated by Nonuniform Anodization of Aluminum. ACS Appl. Interfaces. 2 (12), 3447–3454. https://doi.org/10.1021/am100502u.
7. Gardelis S., Nassiopoulou A. G., Giannetta V., Theodoropoulou M. (2010) Photoluminescence Induced Oscillations in Porous Anodic Aluminum Oxide Films Grown on Si: Effect of the Interface and Porosity. J. Appl. Phys. 107, 113104–113108. https://doi.org/10.1063/1.3432694.
8. Santos A., Balderrama V. S., Alba M., Formentín P., Ferré-Borrull J., Pallarés J., et al. (2012) Tunable Fabry-Pérot Interferometer Based on Nanoporous Anodic Alumina for Optical Biosensing Purposes. Nanoscale Res. Lett. 7. https://doi.org/10.1186/1556-276X-7-370.
9. Hernandez L., Ferre-Borrull J., Macias G., Pallarés J., Marsal L. (2014). Engineering Optical Properties of Gold-Coated Nanoporous Anodic Alumina for Biosensing. Nanoscale Research Letters. 9. https://doi.org/10.1186/1556-276X-9-414.
10. Cantelli L., Santos J. S., Trivinho-Strixino F. (2016) The Effect of Anodization Temperature on Optical Properties of Nanoporous Anodic Alumina (NAA) Films. Journal of Electroanalytical Chemistry. 780, 386–390. https://doi.org/10.1016/j.jelechem.2016.01.009.
11. Kumeria T., Santos A., Losic D. (2013) Ultrasensitive Nanoporous Interferometric Sensor for Label-Free Detection of Gold(III) Ions. ACS Applied Materials & Interfaces. 5 (22), 11783–11790. https://doi.org/10.1021/am403465x.
12. Alekseev S., Lysenko V., Zaitsev V., Barbier D. (2007) Application of Infrared Interferometry for Quantitative Analysis of Chemical Groups Grafted onto the Internal Surface of Porous Silicon Nanostructures. The Journal of Physical Chemistry C. 111 (42), 15217–15222. https://doi.org/10.1021/jp0712452.
13. Santos A., Kumeria T., Losic D. (2013) Nanoporous Anodic Aluminum Oxide for Chemical Sensing and Biosensors. TrAC Trends in Analytical Chemistry. 44, 25–38. https://doi.org/10.1016/j.trac.2012.11.007.
14. Ferro L., Lemos S., Ferreira M., Trivinho-Strixino F. (2017) Use of Multivariate Analysis on Fabry-Pґerot Interference Spectra of Nanoporous Anodic Alumina (NAA) for Optical Sensors Purposes. Sensors and Actuators B: Chemical. 248, 718–723. https://doi.org/10.1016/j.snb.2017.04.051.
15. Gasenkova I. V., Mukhurov N. I., Andrukhovich I. M. (2023) Anodizing Aluminum in a Viscous Electrolyte to Produce One-Dimensional Photonic Crystals. Vesti National Academy of Sciences of Belarus. Gray Physics-Technical Sciences. 68 (1), 7–17. https://doi.org/10.29235/1561-8358-2023-68-1-7-17.
Review
For citations:
Gasenkova I.V., Mukhurov N.I., Andrukhovich I.M. Parameters of Anodic Alumina Determined from Fabry – Perot Oscillations in Specular Reflection Spectra. Doklady BGUIR. 2024;22(6):14-20. (In Russ.) https://doi.org/10.35596/1729-7648-2024-22-6-14-20