Preview

Doklady BGUIR

Advanced search

UV-Photodetectors Based on Zinc Oxide Films Doped with Aluminum and Nickel

https://doi.org/10.35596/1729-7648-2024-22-4-14-21

Abstract

By combining sol-gel and hydrothermal deposition methods on glass substrates, thin-film coatings of zinc oxide doped with nickel and aluminum were obtained. Studies of the structure and composition of the films using scanning electron microscopy, energy-dispersive X-ray and Raman spectroscopy have shown that they consist of close-packed zinc oxide crystallites doped with impurity atoms of nickel and aluminum. Resistive type photodetectors were manufactured based on the films obtained. It has been shown that when irradiated with ultraviolet light with a wavelength less than 400 nm, the resistivity of the structure decreases from 190–210 to 7.5–8.0 Ohm⋅cm. The achieved response time for the rise of the light pulse is 48 s, while the decay time is ≈700 s.

About the Authors

I. A. Grekov
Belarusian State University of Informatics and Radioelectronics (BSUIR)
Belarus

Grekov Igor Alexandrovich, Postgraduate at the Department of Micro and Nanoelectronics, Junior Researcher at the Scientific Research Laboratory “Materials and Structures of Nanoelectronics” (Lab. 4.3),

6, P. Brovki St., Minsk, 220013.

Phone: +375 33 667-93-28



K. O. Yanushkevich
Belarusian State University of Informatics and Radioelectronics (BSUIR)
Belarus

Yanushkevich K. O., Postgraduate at the Department of Micro- and Nanoelectronics, Junior Researcher at the Lab. 4.3, 

Minsk.



E. B. Chubenko
Belarusian State University of Informatics and Radioelectronics (BSUIR)
Belarus

Chubenko E. B., Cand. of Sci., Associate Professor, Associate Professor at the Department of Micro- and Nanoelectronics, Senior Researcher at the Lab. 4.3, 

Minsk.



V. P. Bondarenko
Belarusian State University of Informatics and Radioelectronics (BSUIR)
Russian Federation

Bondarenko V. P., Cand. of Sci., Associate Professor, Head of the Lab. 4.3, 

Minsk.



References

1. Chen K. J., Hung F. Y., Chang S. J., Young S. J. (2009) Optoelectronic Characteristics of UV Photodetect or Based on ZnO Nanowire Thin Films. J. of Alloys and Compounds. 479 (1–2), 74–677. DOI: 10.1016/j.jallcom.2009.01.026.

2. Sahal M., Sersar R., Mari B. (2016) Preparation of Intrinsic and Al-Doped ZnO Thin Layers by Spray Pyrolysis. International Renewable and Sustainable Energy Conference. 1–5. DOI: 10.1109/irsec.2016.7984051.

3. Buddha Deka Boruah (2019) Zinc Oxide Ultraviolet Photodetectors: A Rapid Progress Towards Conventional to Self-Powered. Nanoscale Advances. 1–74. DOI: 10.1039/c9na00130a.

4. Jarzebski Z. M. (1974) Oxide Semiconductors. Oxford, Pergamon Press.

5. Inamdar S. I., Ganbavle V. V., Rajpure K. Y. (2014) ZnO Based Visible-Blind UV Photodetector by Spray Pyrolysis. Superlattices and Microstructures. 76, 253–263. DOI: 10.1016/j.spmi.2014.09.041.

6. Zheng Z., Liu K., Chen X., Qiao B., Ma H., Liu D., et al. (2021) High-Performance Flexible UV Photodetector Based on Self-Supporting ZnO Nano-Networks Fabricated by Substrate-Free Chemical Vapor Deposition. Nanotechnology. 32 (47). DOI: 10.1088/1361-6528/ac1bda.

7. Young S.-J., Chiou C.-L., Liu Y.-H., Ji L.-W. (2016) Synthesis of Ga-Doped ZnO Nanorods by Hydrothermal Method and Their Application to Ultraviolet Photodetector. Inventions. 1 (1). DOI: 10.3390/inventions1010003.

8. Chey C. O., Masood A., Riazanova A., Liu X., Rao K. V., Nur O., et al. (2014) Synthesis of Fe-Doped ZnO Nanorods by Rapid Mixing Hydrothermal Method and Its Application for High Performance UV Photodetector. J. of Nanomaterials. 1–9. DOI: 10.1155/2014/524530.

9. Foo K. L., Kashif M., Hashim U., Ali M. E. (2013) Sol-Gel Derived ZnO Nanoparticulate Films For Ultraviolet Photodetector (UV) Applications. Optik – International Journal for Light and Electron Optics. 124 (22), 5373–5376. DOI: 10.1016/j.ijleo.2013.03.120.

10. Liu C. Y., Zhang B. P., Lu Z. W., Binh N. T., Wakatsuki K., Segawa Y., et al. (2008) Fabrication and Characterization of ZnO Film Based UV Photodetector. J. of Materials Science: Materials in Electronics. 20 (3), 197–201. DOI: 10.1007/s10854-008-9698-x.

11. Han J., Zhang W., Chen W., Ray S., Zhang J., He M., et al. (2007) Terahertz Dielectric Properties and Low-Frequency Phonon Resonances of ZnO Nanostructures. J. Phys. Chem. 111 (35), 13000–13006. DOI: 10.1021/jp073343t.

12. Shah A., Ahmad M., Rahmanuddin, Khan S., Aziz U., Ali Z., et al. (2019) The Role of Al Doping on ZnO Nanowire Evolution and Optical Band Gap Tuning. Applied Physics A. 125 (10), 1–8. DOI: 10.1007/s00339019-3005-y.

13. Khan A. (2010) Raman Spectroscopic Study of the ZnO Nanostructures. J Pak Mater Soc. 4 (1), 5–9. DOI: 2070-772X.

14. Manjón F. J., Marí B., Serrano J., Romero A. H. (2005) Silent Raman Modes in Zinc Oxide and Related Nitrides. J. of Applied Physics. 97 (5). DOI: 10.1063/1.1856222.

15. Chen K. J., Fang T. H., Hung F. Y., Ji L. W., Chang S. J., Young S. J., et al. (2008) The Crystallization and Physical Properties of Al-doped ZnO Nanoparticles. Applied Surface Science. 254 (18), 5791–5795. DOI: 10.1016/j.apsusc.2008.03.080.

16. Rana A. K., Kumar Y., Rajput P., Jha S. N., Bhattacharyya D., Shirage P. M. (2017) Search for Origin of Room Temperature Ferromagnetism Properties in Ni-Doped ZnO Nanostructure. ACS Applied Materials & Interfaces. 9 (8), 7691–7700. DOI: 10.1021/acsami.6b12616.

17. Ning Y., Zhang Z., Teng F., Fang X. (2018) Novel Transparent and Self-Powered UV Photodetector Based on Crossed ZnO Nanofiber Array Homojunction. Small. 14 (13). DOI: 10.1002/smll.201703754.

18. Hassan Z., Ahmed N. M., Yam F. K. (2012) Comparative Study of Ultraviolet Detectors Based on ZnO Nanostructures Grown on Different Substrates. Journal of Applied Physics. 112 (7). DOI: 10.1063/1.4757619.


Review

For citations:


Grekov I.A., Yanushkevich K.O., Chubenko E.B., Bondarenko V.P. UV-Photodetectors Based on Zinc Oxide Films Doped with Aluminum and Nickel. Doklady BGUIR. 2024;22(4):14-21. (In Russ.) https://doi.org/10.35596/1729-7648-2024-22-4-14-21

Views: 318


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)