Features of Structural and Phase Transformations in Layers of Ni–Pt–V Alloy on Silicon During Rapid Heat Treatment
https://doi.org/10.35596/1729-7648-2024-22-4-5-13
Abstract
Using the methods of Rutherford backscattering, X-ray phase analysis, transmission electron microscopy and diffraction, the features of structural and phase transformations in layers of Ni–Pt–V alloy with a thickness of 30 nm on the surface of monocrystalline n-Si(111) under rapid heat treatment with incoherent constant-power light flux from quartz halogen lamps directed to the reverse side of the substrate for a duration of 7 s until a temperature of 350 to 500 °С is reached have been established. It is shown that under these conditions of heat treatment, the formation of NixSiy layers occurs, characterized by varying degrees of ordering (epitaxy). It was found that rapid heat treatment at a temperature of 350 °С is accompanied by a redistribution of nickel and silicon atoms to the composition ∼Ni3Si at the film-substrate interface with a decrease in the proportion of Si towards the surface with the formation of domains of the hexagonal (P321) phase of the β-Ni31Si12 silicide epitaxial to the substrate. Rapid heat treatment at temperature from 400 to 500 °С leads to a further diffusion redistribution of the reacting components to a composite composition of ∼Ni50Si50 and the formation of an orthorhombic (Pnma) phase of NiSi silicide having a transrotational degree of epitaxy. In this case, the ordered growth of NiSi silicide occurs on the epitaxial domains of β-Ni31Si12, which persist at the interface between the silicide and the substrate up to a temperature of 500 °С.
Keywords
About the Authors
Ja. А. SolovjovBelarus
Solovjov Jaroslav Aleksandrovich, Cand. of Sci., Аssociate Professor, Head of the Branch Laboratory of New Technologies and Materials,
220108, Minsk, Korzhenevskogo St., 16
JSC “INTEGRAL”.
Phone: +375 17 398-14-03
P. I. Gaiduk
Belarus
Gaiduk P. I., Dr. of Sci. (Phys. and Math.), Professor, Professor at the Physical Electronics and Nanotechnologies Department,
Minsk.
References
1. Borisenko V. E., Heskesth P. J. (1997) Rapid Thermal Processing of Semiconductors. Berlin, Springer.
2. Chen L. J. (2004) Silicide Technology for Integrated Circuits. London, Institution of Engineering and Technology.
3. Wolansky D., Blaschke J. P., Drews J., Grabolla T., Heinemann B., Lenke T., et al. (2020) Nickel and NickelPlatinum Silicide for BCDMOS Devices. ECS Trans. 98 (5), 351–361. http:/doi.org/10.1149/09805.0351ecst.
4. Wang R. N., Feng J. Y., Huang Y. (2003) Mechanism About Improvement of NiSi Thermal Stability for Ni/Pt/Si (111) Bi-Layered System. Applied Surface Science. 207 (1–4), 139–143. http://doi.org/10.1016/S0169-4332(02)01327-2.
5. Adusumilli P., Seidman D., Murray C. (2012) Silicide-Phase Evolution and Platinum Redistribution During Silicidation of Ni0.95Pt0.05/Si(100) Specimens. Applied Physics Letters. 112 (6). http://doi.org/10.1063/1.4751023.
6. Li M. Y., Chen J. M., Liu C. C., Lin J. F. (2011) CESL-Stressor-Induced Morphological Instability of Pt-Dissolved Ni Germanosilicide Formed on Silicon Germanium Epilayer. IEEE Electron Device Letters. 32 (12), 1725–1727. http://doi.org/10.1109/LED.2011.2166991.
7. Mangelinck D., Dai J. Y., Pan J. S., Lahiri S. K. (1999) Enhancement of Thermal Stability of NiSi Films on (100)Si and (111)Si by Pt Addition. Applied Physics Letters. 75 (12), 1736–1738. http://doi.org/10.1063/1.124803.
8. Cioldin F. H., Diniz J. A., Vaz A. R., Calligaris G. A., Cardoso L. P. et al. (2017) Study of the Phase Transitions of Nickel Platinum Silicide Obtained by Sputtering and Rapid Thermal Processing. 32nd Symposium on Microelectronics Technology and Devices (SBMicro). http://doi.org/10.1109/SBMicro.2017.8113007.
9. Ahmet P., Shiozawa T., Nagahiro K., Nagata T., Kakushima K., Tsutsu K., et al. (2008) Thermal Stability of Ni Silicide Films on Heavily Doped n+ and p+ Si Substrates. Microelectronic Engineering. 85 (7), 1642–1646. http://doi.org/10.1016/j.mee.2008.04.001.
10. Lee P. S., Pey K. L., Mangelinck D., Ding J., Chi D. Z., Chan L. (2001) New Salicidation Technology with Ni(Pt) Alloy for MOSFETs. IEEE Electron Device Letters. 22 (12), 568–570. http://doi.org/10.1109/55.974579.
11. Detavernier C., Özcan A. S., Jordan-Sweet J., Stach E. A., Tersoff J., Ross F. M., et al. (2003) An Off-Normal Fibre-Like Texture in Thin Films on Single-Crystal Substrates. Nature. 426, 641–645. http://doi.org/10.1038/nature02198.
12. Murarka S. P. (1986) Silicides for VLSI Applications. Moscow, Mir Publ. 176 (in Russian).
13. Tu K. N., Chu W. K., Mayer J. W. (1975) Structure and Growth Kinetics of Ni2Si on Silicon. Thin Solid Films. 25 (2), 403–413. http://doi.org/10.1016/0040-6090(75)90058-9.
14. Frank K., Schubert K. (1971) Kristallstruktur von Ni31Si12. Acta Crystallographica Section B. 27 (5), 916–920. https://doi.org/10.1107/S0567740871003261.
15. Hirsch P. B., Howie A., Nicholson R. B., Pashley D. W., Whelan M. J. (1968) Electron Microscopy of Thin Crystals. Moscow, Mir Publ. 574 (in Russian).
16. Tomas G., Goridge M. J. (1983) Transmission Electron Microscopy of Materials. Moscow, Nauka Publ. (in Russian).
17. Alberti A., Bongiorno C., Alippi P., Magna A. L., Spinella C., Rimini E. (2006) Structural Characterization of Ni2Si Pseudoepitaxial Transrotational Structures on [001] Si. Acta Crystallografica Section B. 62 (5), 729–736. https://doi.org/10.1107/S0108768106029727.
18. Alberti A., Magna A. L. (2013) Role of the Early Stages of Ni-Si Interaction on the Structural Properties of the Reaction Products. Journal of Applied Physics. 114 (12). https://doi.org/10.1063/1.4818630.
Review
For citations:
Solovjov J.А., Gaiduk P.I. Features of Structural and Phase Transformations in Layers of Ni–Pt–V Alloy on Silicon During Rapid Heat Treatment. Doklady BGUIR. 2024;22(4):5-13. (In Russ.) https://doi.org/10.35596/1729-7648-2024-22-4-5-13