Preview

Doklady BGUIR

Advanced search

Methane Sensitivity of Pulsed Laser Treated SnO2(Ag) Nanocomposite Layers

https://doi.org/10.35596/1729-7648-2023-21-2-5-13

Abstract

This paper reports on the gas sensitivity of SnO2(Ag) layers, consequently formed by magnetron sputtering of Sn + Ag target, oxidation of Sn0.65Ag0.35 layers at the temperature of 650 °С within 30 min and modified by laser radiation pulses at energy density of W = 1.5–3.2 J/cm2. Using transmission electron microscopy and transmission electron diffraction it was found, that Sn0.65Ag0.35 and SnO2(Ag) layers are nanocomposite with average grain size of 100–150 nm. Sn0.65Ag0.35 and SnO2(Ag) layers contain grains of the following phase composition: a tetragonal β-Sn with an orthorhombic Ag3Sn (Sn0.65Ag0.35, magnetron sputtering) and a tetragonal SnO2 (cassiterite) with a face-centered cubic Ag structure (SnO2(Ag), thermal oxidation). The sensitivity of SnO2(Ag) layers with respect to 2000–20 000 ppm methane in the air was obtained from sensitivity S measurements at T = 200–360 °C. It is shown that pulsed laser annealing of SnO2(Ag) layers results in up to 12 % increase of sensitivity of SnO2(Ag) layers to methane in comparison with the initial SnO2(Ag) layers. 

About the Authors

S. L. Prakopyeu
Belarusian State University
Belarus

Prakopyeu Stanislau Leanidavich, Senior Lecturer at the Department of Physical Electronics and Nanotechnology

220064, Republic of Belarus, Kurchatova St., 5

Tel.: +375 29 276-16-90



P. I. Gaiduk
Belarusian State University
Belarus

Dr. of Sci. (Phys. and Math.), Professor at the Department of Physical Electronics and Nanotechnology



References

1. Pan S., Li G. (2011) Recent Progress in p-Type Doping and Optical Properties of SnO2 Nanostructures for Optoelectronic Device Applications. Recent Patents in Nanotechnology. 5, 138–161. DOI: 10.2174/187221011795909161.

2. Li K.-N., Wang Y.-F., Xu Y.-F., Chen, H.-Y., Su C.-Y., Kuang D.-B. (2013) Macroporous SnO2. Synthesized via a Template-Assisted Reflux Process for Efficient Dye-Sensitized Solar Cells. Appl. Mater. Interfaces. 5, 5105–5111. DOI: 10.1021/am4009727.

3. Geckeler K. E., Rosenberg E. (2005) Functional Nanomaterials. Valencia, Amer. Sci. Publ.

4. Wang L., Wang Y., Yu K., Wang S., Zhang Y., Wei C. (2016) A Novel Low Temperature Gas Sensor Based on Pt-Decorated Hierarchical 3D SnO2 Nanocomposites. Sensors and Actuators B: Chemical. 232, 91–101. DOI: 10.1016/j.snb.2016.02.135.

5. Gaiduk P. I. (2014) Plasmonic-Based SnO2 Gas Sensor with In-Void Segregated Silver Nanoparticles. Microel. Eng. 125, 68–72. DOI: 10.1016/j.mee.2013.11.005.

6. Lee K.-S., El-Sayed M. A. (2006) Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition. J. Phys. Chem. B. 110 (39), 19220–19225. DOI: 10.1021/jp062536y.

7. Zhang J., Liu X., Neri G., Pinna N. (2016) Nanostructured Materials for Room‐Temperature Gas Sensors. Adv. Mater. 28 (5), 795–831. DOI: 10.1002/adma.201503825.

8. Dey A. (2018) Semiconductor Metal Oxide Gas Sensors: a Review. Materials Science and Engineering. B. 229, 206–217. DOI: 10.1016/j.mseb.2017.12.036.

9. Watakabe H., Sameshima T., Kanno H., Miyao M. (2006) Electrical Properties for Poly-Ge Films Fabricated by Pulsed Laser Annealing. Thin Solid Films. 508 (1–2), 315–317. DOI: 10.1016/j.tsf.2005.08.393.

10. Misra N., Xu L., Rogers M. S., Ko S. H., Grigoropoulos C. P. ((с) 2008) Pulsed Laser Annealing of Semiconductor Structures for Functional Devices. Phys. Stat. Sol. 5 (10), 3264–3270. DOI: 10.1002/pssc.200779506.

11. Taneja P., Banerjee R., Ayyub P., Dey G. K. (2001) Observation of a Hexagonal (4H) Phase in Nanocrystalline Silver. Phys. Rev. B. 64, 033405. DOI: 10.1103/PhysRevB.64.033405.

12. Chen J., Feng J., Xiao B., Zhang K. H., Du Z. P., Hong Z. J., Zhou R. (2010) Interface Structure of Ag/SnO2 Nanocomposite Fabricated by Reactive Synthesis. J. Mater. Sci. Technol. 26, 49–55. DOI: 10.1016/S1005- 0302(10)60008-4.

13. Bhagavat G. K., Sundaram K. B. (1979) Electrical and Photovoltaic Properties of Tin Oxide Silicon Heterojunctions. Thin Solid Films. 63, 197–201. DOI: 10.1016/0040-6090(79)90126-3.

14. Gaman V. I. (2012) Physics of Semiconductor Gas Sensors. Tomsk, Publishing House of Scientific and Technical Literature (in Russian).

15. Shimizu Y., Egashira M. (1999) Basic Aspects and Challenges of Semiconductor Gas Sensors. MRS Bulletin. 24 (6), 18–24. DOI: 10.1557/S0883769400052465.

16. Kamins T. I. (1971) Hall Mobility in Chemically Deposited Polycrystalline Silicon. J. of Appl. Phys. 42, 4357–4365. DOI: 10.1063/1.1659780.

17. Lopes A., Fortunato E., Nunes P., Vilarinho P., Martins R. (2001) Correlation between the Microscopic and Macroscopic Characteristics of SnO2 Thin Film Gas Sensors. International Journal of Inorganic Materials. 3 (8), 1349–1351. DOI: 10.1016/S1466-6049(01)00160-X.

18. Pasynkov V. V., Sorokin V. S. (2001) Materials of Electronic Engineering. Saint Petersburg, Publ. (in Russian).

19. Ioffe I. I., Pismen L. M. (1972) Engineering Chemistry of Heterogeneous Catalysis. Leningrad, Chimiya Publ. (in Russian).


Review

For citations:


Prakopyeu S.L., Gaiduk P.I. Methane Sensitivity of Pulsed Laser Treated SnO2(Ag) Nanocomposite Layers. Doklady BGUIR. 2023;21(2):5-13. (In Russ.) https://doi.org/10.35596/1729-7648-2023-21-2-5-13

Views: 380


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)