Development of New Generation Electrodes for Registration of Heart Bioelectric Potentials
https://doi.org/10.35596/1729-7648-2023-21-1-43-50
Abstract
When conducting electrophysiological studies, electrodes are used to register bioelectrical signals, the correct choice and use of which determine the reliability and diagnostic significance of the data obtained. Recording an electrocardiogram is a standard procedure in medicine, but its monitoring is often limited to 24 hours.
This is due to the limited performance of the electrodes. The properties of the skin/electrode interface determine the performance of medical equipment. Therefore, the surface conditions and the composition of the material from which the electrode is made should comply with the requirements of the electrocardiogram recording device. It is important to implement fast transmission of a useful signal with low losses and without artifacts. Modern electrodes using Ag/AgCl have a limited-service life, since their dehydration and surface degradation lead to the formation of various artifacts on the electrocardiogram record. Alternative – dry flexible electrodes. Such electrodes can be based on carbon materials (reduced graphene oxide or a diamond-like coating) on a plastic (film) substrate. The emphasis of modern research is aimed at carrying out work on the development of dry electrodes, which would provide an opportunity to carry out high-quality long-term registration of electrocardiosignals without gels and adhesives.
Keywords
About the Authors
Ye. V. LemeshkoBelarus
Lemeshko Yegor Vladimirovich, Cand. of Sci., Head of the Multidisciplinary Diagnostic Laboratory
220072, Minsk, Academicheskaya St., 28
+375 29 621-12-71
S. N. Vasukevich
Belarus
Researcher at the Multidisciplinary Diagnostic Laboratory
Minsk
S. V. Goubkin
Belarus
Corr. Member of the National Academy of Sciences of Belarus, Dr. of Sci. (Med.), Professor, Director
Minsk
References
1. Yu Y., Zhang J., Liu J. (2013) Biomedical Implementation of Liquid Metal Ink as Drawable ECG Electrode and Skin Circuit. Plos One. 8 (3). DOI: 10.1371/journal.pone.0058771.
2. Thakor N. V. (1999) Biopotentials and Electrophysiology Measurement. Boca Raton, CRC Press LLC.
3. Gruetzmann A., Hansen S., Müller J. (2007) Novel Dry Electrodes for ECG Monitoring. Physiological Measurement. 28 (11), 1375–1390. DOI: 10.1088/0967-3334/28/11/005.
4. Beutler Br. D., Lee R. A., Cohen Ph. R. (2016) Localized Cutaneous Argyria: Report of Two Patients and Literature Review. Dermatol Online J. 22 (11). DOI: 13030/qt4wm1j7pt.
5. Uter W., Werfel Th., White L. R., Johansen J. D. (2018) Contact Allergy: a Review of Current Problems from a Clinical Perspective. Int J. Environ Res Public Health. 15 (6), 1108. DOI: 10.3390/ijerph15061108.
6. Searle A., Kirkup L. (2000) A Direct Comparison of Wet, Dry and Insulating Bioelectric Recording Electrodes. Physiological Measurement. 21 (2), 271–283. DOI: 10.1088/0967-3334/21/2/307.
7. Gatzke R. D., Miller H. A., Harrison D. C. (ed.) (1974) The Electrode: a Measurement Systems Viewpoint. Biomedical Electrode Technology. New York, Academic Press. 99–116.
8. Guo S., Lin R., Wang L., Lau S., Wang Q., Liu R. (2019) Low Melting Point Metal-based Flexible 3D Biomedical Microelectrode Array by Phase Transition Method. Mater. Sci. Eng. C. Mater. Biol. Appl. 99, 735–739. DOI: 10.1016/j.msec.2019.02.015.
9. Lee S. M., Byeon H. J., Kim B. H., Lee J., Jeong J. Y., Lee J. H., Moon J. H., Park C., Choi H., Lee S. H., Lee K. H. (2017) Flexible and Implantable Capacitive Microelectrode for Bio-potential Acquisition. BioChip J. (11), 153–163. DOI: 10.1007/s13206-017-1304-y.
10. Yongan Huang, Wentao Dong, Chen Zhu, Lin Xiao (2018) Electromechanical Design of Self-Similar Inspired Surface Electrodes for Human-Machine Interaction. Complexity. 1–14. DOI: 10.1155/2018/3016343.
11. Kim D. H., Lu N., Ma R., Kim Y. S., Kim R. H., Wang S., Wu J., Won S. M., Tao H., Islam A., Yu K. J., Kim T. I., Chowdhury R., Ying M., Xu L., Li M., Chung H. J., Keum H., McCormick M., Liu P., Zhang Y. W., Omenetto F. G., Huang Y., Coleman T., Rogers J. A. (2011) Epidermal Electronics. Science. 333 (6044), 838–843. DOI: 10.1126/science.1206157.
12. Liu Y., Norton J. J., Qazi R., Zou Z., Ammann K. R., Liu H., Yan L., Tran P. L., Jang K. I., Lee J. W., Zhang D., Kilian K. A., Jung S. H., Bretl T., Xiao J., Slepian M. J., Huang Y., Jeong J. W., Rogers J. A. (2016) Epidermal Mechano-acoustic Sensing Electronics for Cardiovascular Diagnostics and Human-machine Interfaces. Science Advances. 2 (11). DOI: 10.1126/sciadv.1601185.
Review
For citations:
Lemeshko Ye.V., Vasukevich S.N., Goubkin S.V. Development of New Generation Electrodes for Registration of Heart Bioelectric Potentials. Doklady BGUIR. 2023;21(1):43-50. (In Russ.) https://doi.org/10.35596/1729-7648-2023-21-1-43-50