1. Rena G., Sakamoto K. (2014) Salicylic Acid: Old and New Implications for the Treatment of Type 2 diabetes? Diabetol. Int. 5 (4), 212-218. https://doi.org/10.1007/s13340-014-0177-8.
2. Bashir A. I. J., Kankipati C. S., Jones S., Newman R. M., Safrany S. T., Perry C. J., Nicholl I. D. (2019) A Novel Mechanism for the Anticancer Activity of Aspirin and Salicylates. Int. J. Oncol. 54 (4), 1256-1270. https://doi.org/10.3892/ijo.2019.4701.
3. JanoŠ P., Spinello A., Magistrato A. (2021) All-atom Simulations to Studying Metallodrugs. Target Interactions. Curr. Opin. Chem. Biol. (61), 1-8. https://doi.org/10.1016/j.cbpa.2020.07.005.
4. Stathopoulou M.-E. K., Banti C. N., Kourkoumelis N., Hatzidimitriou A. G., Kalampounias A. G., Hadjikakou S. K. (2018) Silver Complex of Salicylic Acid and its Hydrogel-cream in Wound Healing Chemotherapy. J Inorg. Biochem. (181), 41-55. https://doi.org/10.1016/j.jinorgbio.2018.01.004.
5. Banti C. N., Papatriantafyllopoulou C., Tasiopoulos A. J., Hadjikakou S. K. (2018) New Metalo-therapeutics of NSAIDs Against Human Breast Cancer Cells. Eur. J Med. Chem. (143), 1687-1701. https://doi.org/10.1016/j.ejmech.2017.10.067.
6. Wu X.-W., Zheng Y., Wang F.-X., Cao J.-J., Zhang H., Zhang D.-Y., Tan C.-P., Ji L.-N., Mao Z.-W. (2019) Anticancer IrIII-aspirin Conjugates for Enhanced Metabolic Immunomodulation and Mitochondrial Lifetime Imaging. Chem. Eur. J. 25 (28), 7012-7022. https://doi.org/10.1002/chem.201900851.
7. Deng J., Gou Y., Chen W., Fu X., Deng H. (2016) The Cu/Ligand Stoichiometry Effect on the Coordination Behavior of Aroyl Hydrazone with Copper(II): Structure, Anticancer Activity and Anticancer Mechanism. Bioorg. Med. Chem. 24 (10), 2190-2198. https://doi.org/10.1016/j.bmc.2016.03.033.
8. Zare M., Namratha K. (2018) Surfactant Assisted Solvothermal Synthesis of ZnO Nanoparticles and Study of their Antimicrobial and Antioxidant Properties. J Mater. Sci. Technol. 34 (6), 1035-1043. https://doi.org/10.1016/j.jmst.2017.09.014.
9. Widiyastuti W., Wang W.-N. (2007) A Pulse Combustion Spray Pyrolysis Process for the Preparation of Nano and Submicrometer Sized Oxide Particles. J. Am. Ceram. Soc. 90 (12), 3779-3785. https://doi.org//10.1111/j.15512916.2007.02045.x.
10. Saloga P. E. J., Thünemann A. F. (2019) Microwave Assisted Synthesis of Ultrasmall Zinc Oxide Nanoparticles. Langmuir. 35 (38), 12469-12482. https://doi.org/10.1021/acs.langmuir.9b01921.
11. Hinman J. J., Suslick K. S. (2017) Nanostructured Materials Synthesis Using Ultrasound. Top Curr. Chem. (Z). 375 (1), 59-94. https://doi.org/10.1007/s41061-016-0100-9.
12. Laurenti M., Lamberti A. (2019) Graphene Oxide Finely Tunes the Bioactivity and Drug Delivery of Mesoporous ZnO Scaffolds. ACS Appl. Mater. Interfaces. 11 (1), 449-456. https://doi.org/10.1021/acsami.8b20728.
13. Alipour N., Namazi H. (2020) Chelating ZnO-Dopamine on the Surface of Graphene Oxide and its Application as pH-Responsive and Antibacterial Nanohybrid Delivery Agent for Doxorubicin. Mater. Sci. Eng. C Mater. Biol. Appl. (108), 110459. https://doi.org/10.1016/j.msec.2019.110459.
14. VolovŠek V., Colombo L., Furić K. (1983) Vibrational Spectrum and Normal Coordinate Calculations of the Salicylic Acid Molecule. J Raman Spectrosc. 14 (5), 347-352. https://doi.org//10.1002/jrs.1250140511.