Determination of a Similar Anatomical Area on a Chest CT Image Using Traditional Image Feature Extraction Methods
https://doi.org/10.35596/1729-7648-2022-20-5-48-56
Abstract
The traditional image descriptor definition algorithms are considered, such as SIFT, ORB, LBP, GLSM. With the help of them, the searching task for a similar anatomical area on the CT images of the lungs is solved. The article proposes a methodology for performing a comparative traditional algorithms for determining images descriptors analysis and optimal anatomical features. Algorithms are tested when searching for a similar anatomical layer in the framework of the computer tomography images layers of of light patient, as part of the search for similar anatomical form on the layer among the computer tomography images of light two patients, and among the images of computed tomography of light hundred patients. As a result, it is determined that GLSM shows the best results when solving the task of classifying an image anatomical area (averaged error of determining the anatomical layer is 5 %). It is determined that the optimal signs on the lungs correspond to the presence of organs: heart, liver and top edge of the lung. Conclusions are fomulated about the need to use neural network methods to improve the error in determining the similar layer containing the necessary anatomical structure.
About the Authors
A. A. KosarevaBelarus
Kosareva Alexandra Andreevna, Postgraduate, Assistant at the Electronic Engineering and Technology Department
220013, Republic of Belarus, Minsk, P. Brovka St., 6,
tel. +375-17- 293-88-60;
P. V. Kamlach
Belarus
Kamlach Pavel V., Cand. of Sci., Deputy Dean of the Faculty of Computer Design, Associate Professor at the Electronic Engineering and Technology Department
220013, Republic of Belarus, Minsk, P. Brovka St., 6,
V. A. Kovalev
Belarus
Kovalev Vassili A., Cand. of Sci., Head of the Biomedical Image Analysis Group
Minsk
References
1. Chen, Chao-I, Tsai, Chang-Ming, Wang, Yuanfang, Koppel, Dan. Feature Detector and Descriptor for Medical ImagesFebruary. Proceedings of SPIE – The International Society for Optical Engineering, 1 Feb., 2009. DOI:10.1117/12.811210.
2. Solem J.E. Programming Computer Vision with Python. O'Reilly Media, 2012.
3. Calonder М., Lepetit V., Strecha С., Fua P. CVLab, Computer Vision. BRIEF: Binary Robust Independent Elementary Features – ECCV 2010, 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5–11, 2010, Proceedings. Part IV. DOI:10.1007/978-3-642-15561-1_56.
4. Kovalev V. and Volmer S. Color Co-Occurrence Descriptors for Querying-by-Example. Int. Conference on Multimedia Modelling, Oct. 12–15, Lausanne, Switzerland. IEEE Comp. Society Press. 1998:32-38.
5. Liauchuk V, Kovalev V, Safonau I, Stsepankou D, Hesser J. CT image reconstruction with the co-occurrence matrix similarity as regularization term. International Journal of Computer Assisted Radiology and Surgery, Springer. June 2013;8(1):307-308.
6. Косарева А.А., Снежко Э.В, Камлач П.В., Ковалев В.А. Исследование и подготовка архива КТ- изображений патологий лёгких для системы автоматического поиска заданного анатомического участка. BIG DATA и анализ высокого уровня: сборник научных статей VII Международной научно-практической конференции, Минск, 19–20 мая 2021 г. Минск: Бестпринт; 2021:253-257.
7. Kosareva А.А., Snezko E.V, Kamlach P.V., Kovalev V.A. [Ppulmonary pathologies CT images archive`s research and preparation for a given anatomic area automatic system]. BIG DATA and Advanced Analytics = BIG DATA i analiz vysokogo urovnya: sbornik nauchnyh statej VII Mezhdunarodnoj nauchno-prakticheskoj konferencii, Minsk, May 19–20, 2021. Minsk: Bestprint; 2021:253-257. (In Russ.)
8. Murphy A., Baba Y. Windowing (CT). Reference article, Radiopaedia.org. (https://radiopaedia.org/articles/windowing-ct?lang=us, accessed on 09 Feb. 2022). doi.org/10.53347/rID-52108.
9. Liauchuk V., Kovalev V. Superpixel co-occurrence for quantitative description of biomedical images. In: XIII Int. Conf. on Pattern Recognition and Information Processing, 3–5 Oct., 2016, Minsk. Belarus State University; 2016:145-147.
Review
For citations:
Kosareva A.A., Kamlach P.V., Kovalev V.A. Determination of a Similar Anatomical Area on a Chest CT Image Using Traditional Image Feature Extraction Methods. Doklady BGUIR. 2022;20(5):48-56. (In Russ.) https://doi.org/10.35596/1729-7648-2022-20-5-48-56