1. Redemann C.E, Lucas H.J. Some derivatives of cyameluric acid and probable structures of melam, melem and melon. Journal of the American Chemical Society. 1940;62:842-846. https://doi.org/10.1021/JA01861A038.
2. Teter D.M, Hemley R.J. Low-compressibility carbon nitrides. Science. 1996;271:53-55. https://doi.org/10.1126/science.271.5245.53.
3. Gong Y., Li M., Wang Y. Carbon Nitride in Energy Conversion and Storage: Recent Advances and Future Prospects. ChemSusChem. 2015;8:931-946. https://doi.org/10.1002/cssc.201403287.
4. Zhang X., Xie X., Wang H., Zhang J., Pan B., Xie Y. Enhanced Photoresponsive Ultrathin Graphitic-Phase C3N4 Nanosheets for Bioimaging. Journal of the American Chemical Society. 2013;135:18-21. https://doi.org/10.1021/ja308249k.
5. Cao S., Low J., Yu J. Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Advanced Materials. 2015;27:2150-2176. https://doi.org/10.1002/adma.201500033.
6. Thomas A., Fischer A., Goettmann F., Antonietti M., Muller J.-O., Schlogl R., Carlsson J.M. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry. 2008;18:4893-4908. https://doi.org/10.1039/B800274F.
7. Zheng Y., Liu J., Liang J., Jaroniec M., Qiao S.Z. Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 2012;5:6717-6731. https://doi.org/10.1039/C2EE03479D.
8. Huang D., Chen S., Zeng G., Gong X., Zhou C., Cheng M., Xue W., Yan X., Li J. Artificial Z-scheme photocatalytic system: What have been done and where to go? Coordination Chemistry Reviews. 2019;385:44-80. https://doi.org/10.1016/j.ccr.2018.12.013.
9. Chubenko E.B., Baglov A.V., Leanenia M.S., Urmanov B.D., Borisenko V.E. Broad band photoluminescence of g-C3N4/ZnO/ZnS composite towards white light source. Materials science and Engineering B. 2021;267:115109. https://doi.org/10.1016/j.mseb.2021.115109.
10. Chubenko E.B., Baglov A.V., Borisenko V.E. One-Step synthesis of visible range luminescent multicomponent semiconductor composites based on graphitic carbon nitride. Advanced Photonics Research. 2020;1:2000004. https://doi.org/10.1002/adpr.202000004.
11. Janotti А., Van de Walle C.-G. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics. 2009;72:1-30. https://doi.org/10.1088/0034-4885/72/12/126501.
12. Zhang H., Huang F., Gilbert A., Banfield J.F. Molecular Dynamics Simulations, Thermodynamic Analysis, and Experimental Study of Phase Stability of Zinc Sulfide Nanoparticles. Journal of Physical Chemistry B. 2003;107:13051-13060. https://doi.org/10.1021/JP036108T.
13. Föl H., Christophersen M., Carstensen J., Hasse G. Formation and application of porous silicon. Materials Science and Engineering R. 2002;39:93-141. https://doi.org/10.1016/S0927-796X(02)00090-6.
14. Zouadi N., Messaci S., Sam S., Bradai D., Gabouze N. CO2 detection with CNx thin films deposited on porous silicon. Materials Science in Semiconductor Processing. 2015;29:367-371. https://doi.org/10.1016/J.MSSP.2014.07.023.
15. Li T. Synthesis, characterisation and photocatalytic activity of porous silicon-based materials. Norwich: University of East Anglia; 2017.
16. Grebnev V.P, Chubenko E.B. Synthesis of composite materials based on macroporous silicon and graphitic carbon nitride. Actual Problems of Solid State Physics. 2021;2:59-62.
17. Chubenko E.B., Baglov A.V., Leanenia M.S., Yablonskii G.P., Borisenko V.E. Structure of Photoluminescence Spectra of Oxygen-Doped Graphitic Carbon Nitride. Journal of Applied Spectroscopy. 2020;87:9-14. https://doi.org/10.1007/s10812-020-00954-y.
18. Chubenko E.B., Denisov N.M., Baglov A.V., Bondarenko V.P., Uglov V.V., Borisenko V.E. Recovery behavior of the luminescence peak from graphitic carbon nitride as a function of the synthesis temperature. Crystal Research and Technology. 2020;55:1900163. https://doi.org/10.1002/crat.201900163.