Formation and Properties of Heterosystems Based on Porous Silicon, Graphitic Carbon Nitride and Semiconductor Compounds
https://doi.org/10.35596/1729-7648-2022-20-4-53-61
Abstract
The possibility of pyrolytic synthesis of composite heterosystems based on macroporous silicon, graphitic carbon nitride and wide band semiconductors zinc oxide and zinc sulfide (g-C3N4/ZnO/ZnS) from a mechanical mixture of thiourea and zinc acetate at 500 – 600 °C was shown. The obtained material study by scanning electron microscopy and energy dispersive X-ray spectroscopy showed a uniform filling of macroporous silicon with the composite g-C3N4/ZnO/ZnS with the formation of a continuous composite film on the surface. The photoluminescence of the samples was controlled by the synthesis temperature. Increase of photoluminescence leads to shift of luminescence maximum in high energy range from 544 to 516 nm. It was found that photocatalytic activity of composite heterosystems obtained at a lower temperature is higher due to more developed surface morphology and smaller bandgap width. The materials obtained can be used to create photocatalytic coatings and functional layers of optoelectronic devices.
Keywords
About the Authors
V. P. GrebnevBelarus
Grebnev Vadim Petrovich, Master’s Student at the Microand Nanoelectronics Departament
220013, Minsk, P. Brovka St., 6
tel. +375-29-821-80-89
E. B. Chubenko
Belarus
Cand. of Sci., Associate Professor, Leading Researcher of R&D Laboratory 4.3
Minsk
V. P. Bondarenko
Belarus
Cand. of Sci, Associate Professor, Head of Laboratory 4.3
Minsk
References
1. Redemann C.E, Lucas H.J. Some derivatives of cyameluric acid and probable structures of melam, melem and melon. Journal of the American Chemical Society. 1940;62:842-846. DOI:10.1021/JA01861A038.
2. Teter D.M, Hemley R.J. Low-compressibility carbon nitrides. Science. 1996;271:53-55. DOI:10.1126/science.271.5245.53.
3. Gong Y., Li M., Wang Y. Carbon Nitride in Energy Conversion and Storage: Recent Advances and Future Prospects. ChemSusChem. 2015;8:931-946. DOI:10.1002/cssc.201403287.
4. Zhang X., Xie X., Wang H., Zhang J., Pan B., Xie Y. Enhanced Photoresponsive Ultrathin Graphitic-Phase C3N4 Nanosheets for Bioimaging. Journal of the American Chemical Society. 2013;135:18-21. DOI:10.1021/ja308249k.
5. Cao S., Low J., Yu J. Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Advanced Materials. 2015;27:2150-2176. DOI:10.1002/adma.201500033.
6. Thomas A., Fischer A., Goettmann F., Antonietti M., Muller J.-O., Schlogl R., Carlsson J.M. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry. 2008;18:4893-4908. DOI:10.1039/B800274F.
7. Zheng Y., Liu J., Liang J., Jaroniec M., Qiao S.Z. Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 2012;5:6717-6731. DOI:10.1039/C2EE03479D.
8. Huang D., Chen S., Zeng G., Gong X., Zhou C., Cheng M., Xue W., Yan X., Li J. Artificial Z-scheme photocatalytic system: What have been done and where to go? Coordination Chemistry Reviews. 2019;385:44-80. DOI: 10.1016/j.ccr.2018.12.013.
9. Chubenko E.B., Baglov A.V., Leanenia M.S., Urmanov B.D., Borisenko V.E. Broad band photoluminescence of g-C3N4/ZnO/ZnS composite towards white light source. Materials science and Engineering B. 2021;267:115109. DOI: 10.1016/j.mseb.2021.115109.
10. Chubenko E.B., Baglov A.V., Borisenko V.E. One-Step synthesis of visible range luminescent multicomponent semiconductor composites based on graphitic carbon nitride. Advanced Photonics Research. 2020;1:2000004. DOI: 10.1002/adpr.202000004.
11. Janotti А., Van de Walle C.-G. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics. 2009;72:1-30. DOI:10.1088/0034-4885/72/12/126501.
12. Zhang H., Huang F., Gilbert A., Banfield J.F. Molecular Dynamics Simulations, Thermodynamic Analysis, and Experimental Study of Phase Stability of Zinc Sulfide Nanoparticles. Journal of Physical Chemistry B. 2003;107:13051-13060. DOI:10.1021/JP036108T.
13. Föl H., Christophersen M., Carstensen J., Hasse G. Formation and application of porous silicon. Materials Science and Engineering R. 2002;39:93-141. DOI:10.1016/S0927-796X(02)00090-6.
14. Zouadi N., Messaci S., Sam S., Bradai D., Gabouze N. CO2 detection with CNx thin films deposited on porous silicon. Materials Science in Semiconductor Processing. 2015;29:367-371. DOI:10.1016/J.MSSP.2014.07.023.
15. Li T. Synthesis, characterisation and photocatalytic activity of porous silicon-based materials. Norwich: University of East Anglia; 2017.
16. Grebnev V.P, Chubenko E.B. Synthesis of composite materials based on macroporous silicon and graphitic carbon nitride. Actual Problems of Solid State Physics. 2021;2:59-62.
17. Chubenko E.B., Baglov A.V., Leanenia M.S., Yablonskii G.P., Borisenko V.E. Structure of Photoluminescence Spectra of Oxygen-Doped Graphitic Carbon Nitride. Journal of Applied Spectroscopy. 2020;87:9-14. DOI: 10.1007/s10812-020-00954-y.
18. Chubenko E.B., Denisov N.M., Baglov A.V., Bondarenko V.P., Uglov V.V., Borisenko V.E. Recovery behavior of the luminescence peak from graphitic carbon nitride as a function of the synthesis temperature. Crystal Research and Technology. 2020;55:1900163. DOI: 10.1002/crat.201900163.
Review
For citations:
Grebnev V.P., Chubenko E.B., Bondarenko V.P. Formation and Properties of Heterosystems Based on Porous Silicon, Graphitic Carbon Nitride and Semiconductor Compounds. Doklady BGUIR. 2022;20(4):53-61. (In Russ.) https://doi.org/10.35596/1729-7648-2022-20-4-53-61