Photoacoustic effect in micro- and nanostructures: numerical simulations of Lagrange equations
https://doi.org/10.35596/1729-7648-2021-19-8-58-62
Аннотация
The work provides the description of theoretical and numerical modeling techniques of thermomechanical effects that take place in absorbing micro- and nanostructures of different materials under the action of pulsed laser radiation. A proposed technique of the numerical simulation is based on the solution of equations of motion of continuous media in the form of Lagrange for spatially inhomogeneous media. This model allows calculating fields of temperature, pressure, density, and velocity of the medium depending on the parameters of laser pulses and the characteristics of micro- and nanostructures.
Об авторах
O. G. RomanovБеларусь
Ya. K. Shtykov
Беларусь
I. A. Timoshchenko
Беларусь
Список литературы
1. Attia A.B.E., Balasundaram G., Moothanchery M., Dinish U.S., Bi R., Ntziachristos V., Olivo M. A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics. 2019;16:100144. https://doi.org/10.1016/j.pacs.2019.100144
2. Dumitras D.C., Petrus M., Bratu A.M., Popa C. Applications of Near Infrared Photoacoustic Spectroscopy for Analysis of Human Respiration: A Review. Molecules. 2020;25(7):1728. http://doi.org/10.3390/ molecules25071728.
3. van Capel P.J.S., Peronne E., Dijkhuis J.I. Nonlinear ultrafast acoustics at the nano scale. Ultrasonics. 2015;56:36-51. https://doi.org/10.1016/j.ultras.2014.09.021.
4. Smith R.J., Perez Cota F., Marques L., Chen X., Arca A., Webb K., Aylott J., Somekh M.G., Clark M. Optically excited nanoscale ultrasonic transducers. J. Acoust. Soc. Am. 2015;137:219-227. https://doi.org/10.1121/1.4904487.
5. Taruttis A., Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications. Nature Photonics. 2015;9:219-227. https://doi.org/10.1038/nphoton.2015.29.
6. Romanov O.G., Romanov G.S. Thermomechanical effect of ultrashort laser pulses on single-dimension metallic nanostructures. Bulletin of the Russian Academy of Sciences: Physics. 2014;78(12):1299-1302. https://doi.org/10.3103/s1062873814120260.
7. Khokhlov N., Knyazev G., Glavin B., Shtykov Y., Romanov O., Belotelov V. Interaction of surface plasmon polaritons and acoustic waves inside an acoustic cavity. Optics Letters. 2017;42(18):3558-3561. https://doi.org/10.1364/OL.42.003558.
8. Richtmayer R.D., Morton K.W. Difference methods for initial-value problems. Interscience publishers a division of John Wiley & Sons; 1967.
9. Zel’dovich Ya.B., Raizer Yu.P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena). Moskow: Nauka; 1966.
10. Anisimov S.I., Imas Ya.A., Romanov G.S., Khodyko Y.V. Deistvie izlucheniya bol’shoi moshchnosti na metally (The Effect of High Power Radiation onto Metals). Moskow: Nauka; 1970.
11. Romanov O.G., Zheltov G.I., Romanov G.S. Numerical modeling of thermomechanical processes in absorption of laser radiation in spatially inhomogeneous media. Journal of Engineering Physics and Thermophysics. 2011;84(4):772-780. https://doi.org/10.1007/s10891-011-0533-5.
12. Golubewa L., Timoshchenko I., Romanov O., Karpicz R., Kulahava T., Rutkauskas D., Shuba M., Dementjev A., Svirko Yu., Kuzhir P. Single-walled carbon nanotubes as a photo-thermo-acoustic cancer theranostic agent: theory and proof of the concept experiment. Scientific Reports. 2020;10:22174. https://doi.org/10.1038/s41598-020-79238-6.
Рецензия
Для цитирования:
Romanov O.G., Shtykov Ya.K., Timoshchenko I.A. Photoacoustic effect in micro- and nanostructures: numerical simulations of Lagrange equations. Доклады БГУИР. 2021;19(8):58-62. https://doi.org/10.35596/1729-7648-2021-19-8-58-62
For citation:
Romanov O.G., Shtykov Ya.K., Timoshchenko I.A. Photoacoustic effect in micro- and nanostructures: numerical simulations of Lagrange equations. Doklady BGUIR. 2021;19(8):58-62. https://doi.org/10.35596/1729-7648-2021-19-8-58-62