Modeling AlGaN p-i-n photodiodes
https://doi.org/10.35596/1729-7648-2021-19-8-50-57
Аннотация
Ternary AlGaN alloys with a band gap of 3.4 to 6.2 eV are very promising for photodetectors in the UV wavelength range. Using the COMSOL MULTIPHYSICS software based on AlGaN, a p-i-n photodiode model was developed, including its I–V characteristic, spectral sensitivity of the received radiation, absorption coefficient as a function of the aluminum fraction and the depletion layer thickness. To calculate the process of interaction of a semiconductor with EM radiation, we used a model based on the use of an element of the transition matrix through the carrier lifetime during spontaneous recombination. In this case, the peak sensitivity of the photodiode is from 0.08 to 0.18 A/W at wavelengths of 0.2–0.33 µm. This is in line with experimental results taken from the relevant literature.
Об авторах
N. N. VorsinБеларусь
A. A. Gladyshchuk
Беларусь
T. L. Kushner
Беларусь
N. P. Tarasiuk
Беларусь
S. V. Chugunov
Беларусь
M. V. Borushko
Беларусь
Список литературы
1. Zayac N.S., Gencar' P.A., Bojko V.G., Litvin O.S. Opticheskie svojstva plenok GaN/Al2O3, legirovannyh kremniem. Fizika i tekhnika poluprovodnikov. 2009;43(5):617-620.
2. Mohammad S.N., Morkos Y.H. Progress and prospects of group-III nitride semiconductors. Progress in Quantum Electronics. 1996;20;361. DOI: 10.1016/S0079-6727(96)00002-X.
3. Ambacher O. Growth and applications of Group III-nitrides. Appl. Phys. 1998;31;2653. DOI: 10.1088/0022-3727/31/20/001.
4. Yang C.C., Sheu J.K., Liang X.W., Huang M.S., Lee M.L., Chang K.H., Tu S J., Huang F.-W., Lai W.C. Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers. Appl. Phys. Lett. 2010;97;021113-1. DOI: 10.1063/5.0019576.
5. Berkman E., El-Masry N., Emara A., Bedair S. Nearly lattice-matched n, i and p layers for InGaN p-i-n photodiodes in the 365-500 nm. Appl. Phys. Lett. 2008;92;101118. DOI: 10.1063/1.2896648.
6. Su Y.K., Lee H.C., Lin J.C., Huang K.C., Lin W.J., Li T.C., Chang K.J. In0.11Ga0.89N-based p-i-n photodetector. Phys. Status Solidi C. 2009;6;S811. DOI: 10.1002/pssc.200880757.
7. Lu Y., Zhang Y., Li X.Y. Properties of InGaN P-I-N ultraviolet detector. In: Proc. SPIE 9284, 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronics Materials and Devices for Sensing and Imaging. 2014; 928401. DOI: 10.1117/12.2073317.
8. “COMSOL MULTIPHYSICS Modeling Softwareˮ. COMSOL MULTIPHYSICS.com. COMSOL MULTIPHYSICS, Inc. Retrieved 20 November 2015.
9. Nikonov A.P., Boltar' K.O., YAkovleva N.I. Opticheskie svojstva geteroepitaksial'nyh sloev AlGaN. Prikladnaya fizika. 2014;2:50-52.
10. Kuej R.. Elektronika na osnove nitrida galliya. Moskow: Tekhnosfera; 2011: 582.
11. ATLAS User’s Manual, Device Simulation Software, Version 5.20.2. R, SILVACO International, Santa Clara, CA, 2016.
12. Hirsch L., Barriere A.S. Electrical characterization of InGaN/GaN light emitting diodes grown by molecular beam epitaxy. Journal of Applied Physics. 2003;94(8):5014. DOI: 10.1063/1.1605252.
13. Mott N. Elektronnye processy v nekristallicheskih veshchestvah. Moskow: Mir; 1982.
14. Vorsin N.N., Gladyshchuk A.A., Kushner T.L., Tarasiuk N.P., Chugunov S.V. Modelirovanie i razrabotka AlGaN p-i-n fotodiodov. Vestnik BrGU. 2018;4:5-14.
15. Lutsenko E.V., Danilchyk A.V, Tarasuk N.P., Andryeuski A., Pavloskii V.N., Gurskii A.L., Yablonskii G.P., Kalish H., Jansen R.H., Dikme Y., Schineller B., Heuken M. Laser threshold and optical gain of blue optically pumped InGaN/GaN multiple quantum wells (MQW) grown on Si. Phys. Stat. Sol. (c). 2008;5(6):2263-2266. DOI: 10.1002/pssc.200778673.
Рецензия
Для цитирования:
Vorsin N.N., Gladyshchuk A.A., Kushner T.L., Tarasiuk N.P., Chugunov S.V., Borushko M.V. Modeling AlGaN p-i-n photodiodes. Доклады БГУИР. 2021;19(8):50-57. https://doi.org/10.35596/1729-7648-2021-19-8-50-57
For citation:
Vorsin N.N., Gladyshchu A.A., Kushner T.L., Tarasiuk N.P., Chugunov S.V., Borushko M.V. Modeling AlGaN p-i-n photodiodes. Doklady BGUIR. 2021;19(8):50-57. https://doi.org/10.35596/1729-7648-2021-19-8-50-57