Energy levels of an electron in a circular quantum dot in the presence of spin-orbit interactions
https://doi.org/10.35596/1729-7648-2021-19-8-20-25
Abstract
The two-dimensional circular quantum dot in a double semiconductor heterostructure is simulated by a new axially symmetric smooth potential of finite depth and width. The presence of additional potential parameters in this model allows us to describe the individual properties of different kinds of quantum dots. The influence of the Rashba and Dresselhaus spin-orbit interactions on electron states in quantum dot is investigated. The total Hamiltonian of the problem is written as a sum of unperturbed part and perturbation. First, the exact solution of the unperturbed Schrödinger equation was constructed. Each energy level of the unperturbed Hamiltonian was doubly degenerated. Further, the analytical approximate expression for energy splitting was obtained within the framework of perturbation theory, when the strengths of two spin-orbit interactions are close. The numerical results show the dependence of energy levels on potential parameters.
About the Authors
A. V. BaranBelarus
Aleksandr Valer’evich Baran -– PhD., Senior Researcher
220072, Republic of Belarus, Minsk, Nezavisimosti Ave., 68-2
V. V. Kudryashov
Belarus
Vladimir V. Kudryashov – Leading Researcher at the B.I. Stepanov Institute of Physics
Minsk
References
1. Bychkov Yu.A., Rashba E.I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C. 1984;17:6039-6046.
2. Dresselhaus G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 1955;100:580-586.
3. Li J., Chang K. Direct detection of the relative strength of Rashba and Dresselhaus spin-orbit interaction: Utilizing the SU(2) symmetry. Phys. Rev. B. 2010;82.
4. Meier L., Salis G., Shorubalko I., Gini E., Schon S., Ensslin K. Measurement of Rashba and Dresselhaus spin-orbit magnetic fields. Nature Physics. 2007; 3:650-654.
5. Schliemann J., Egues J.C., Loss D. Anisotropic transport in a two-dimensional electron gas in the presence of spin-orbit coupling. Phys. Rev. Lett. 2003;90.
6. Bernevig B.A., Orenstein J., Zhang S.C. Exact SU(2) symmetry and persistent spin helix in a spin-orbit coupled system. Phys. Rev. Lett. 2006;97.
7. Val´ın-Rodr´ıguez M., Puente A., Serra L. Collective oscillations in quantum rings: A broken symmetry case. Eur. Phys. J. B. 2004;39:87-92.
8. Kudryashov V.V. Electron in a quantum dot with account of the Rashba spin-orbit interaction. Proc. of the XIII Intern. School-Conference “Foundations and Advances in Nonlinear Science”. Minsk, 2006: 125-131.
9. Chaplik A.V., Magarill L.I. Bound states in a two-dimensional short range potential induced by the spin- orbit interaction. Phys. Rev. Lett. 2006; 96.
10. Kudryashov V.V., Baran A.V. Influence of Rashba and Dresselhaus Spin-Orbit Interactions of Equal Strengths on Electron States in Circular Quantum Dot. Nonlinear Dynamics and Applications. 2021;27:24-30.
11. Abramovitz M. and Stegun I.A. Handbook of Mathematical Function. Dover, New York; 1970.
Review
For citations:
Baran A.V., Kudryashov V.V. Energy levels of an electron in a circular quantum dot in the presence of spin-orbit interactions. Doklady BGUIR. 2021;19(8):20-25. https://doi.org/10.35596/1729-7648-2021-19-8-20-25