Параллельное выращивание областей полутоновых изображений на основе выборочного среднего значения яркости области по маршруту роста
https://doi.org/10.35596/1729-7648-2021-19-6-83-91
Аннотация
Рассматривается задача параллельной сегментации полутоновых изображений по яркости для реализации на базе программируемых логических интегральных схем. Сегментация разделяет изображение на области, образованные из пикселей с примерно одинаковыми яркостями, и является вычислительно сложной операцией из-за многократной проверки значения каждого пикселя на возможность присоединения к смежной области. Для ускорения сегментации разработаны параллельные алгоритмы выращивания областей, в которых обработка начинается с окрестностей предварительно выделенных начальных пикселей роста. Условие присоединения к области смежного пикселя учитывает среднюю яркость области для ограничения дисперсии значений ее пикселей. Поэтому при добавлении к области каждого нового пикселя ее средняя яркость пересчитывается. Это приводит к высокой временной сложности. В некоторых параллельных алгоритмах вычисляется выборочное среднее в окне небольшого размера, что позволяет незначительно снизить временную сложность при согласовании размера окна с размерами сегментов. Для существенного снижения временной сложности в статье предложена модель параллельного выращивания областей изображения на основе упрощенного условия присоединения смежных пикселей к области, учитывающего выборочное среднее значение яркости области по маршруту роста, связывающему граничный пиксель области и начальный пиксель роста через последовательность пикселей, используемых для присоединения рассматриваемого граничного пикселя к области. Существенное уменьшение временной сложности предложенной модели параллельного выращивания областей изображения по сравнению с известными моделями достигается за счет незначительного увеличения пространственной сложности.
Об авторе
В. Ю. ЦветковБеларусь
Цветков Виктор Юрьевич, доктор технических наук, доцент, заведующий кафедрой инфокоммуникационных технологий
220013, г. Минск, ул. П. Бровки, 6
Список литературы
1. Praveena M., Balaji N., Naidu C.D. FPGA implementation of high speed medical image segmentation using genetic algorithm. Journal of Theoretical and Applied Information Technology. 2017;95(13):2981-2988.
2. Quesada-Barriuso P., Heras D.B., Argüello F. Efficient GPU Asynchronous Implementation of a Watershed Algorithm Based on Cellular Automata. IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, Leganes. 2012: 79-86. DOI:10.1109/ISPA.2012.19.
3. Liu J., Xu L., Liu Y., [et al.]. FPGA Implementation of Region Growing-Global Inhibition Segmentation Algorithm. International Journal of Simulation – Systems, Science & Technology. 2016;17(24):1-9. DOI 10.5013/IJSSST.a.17.30.08.
4. Fujita T., Sawada S., Kishimoto K., [et al.]. Cellular Automaton Based Pixel Level Snakes Using Active Contour Curvature. International Symposium on Nonlinear Theory and Its Applications, NOLTA 2017, Cancun, Mexico. 2017: 572-575. DOI:10.34385/proc.29.C0L-B-3.
5. Saito M., Okatani T., Deguchi K. Application of the mean field methods to MRF optimization in computer vision. IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI. 2012: 1680-1687. DOI:10.1109/CVPR.2012.6247862.
6. Thurley M.J., Danell V. Fast morphological image processing open-source extensions for GPU processing with CUDA. IEEE Journal of Selected Topics in Signal Processing. 2012;6(7):849-855. DOI:10.1109/JSTSP.2012.2204857.
7. Alvarado R., Tapia J.J., Rolón J.C. Medical image segmentation with deformable models on graphics processing units. The Journal of Supercomputing. 2013;68(1):339-364. DOI:10.1007/s11227-013-1042-4.
8. Roberts M., Packer J., Sousa M.C., [et al.]. A work-efficient GPU algorithm for level set segmentation. Proceedings of the Conference on High Performance Graphics. 2010: 123-132.
9. Wang C., Komodakis N., Paragios N., Markov random field modeling, inference & learning in computer vision & image understanding: a survey. Computer Vision and Image Understanding. 117(11):1610-1627. DOI:10.1016/j.cviu.2013.07.004.
10. Leblond A., Kauffmann C. RAIC: Robust Adaptive Image Clustering. 25th IEEE International Conference on Image Processing (ICIP). 2018:3678-3682. DOI: 10.1109/ICIP.2018.8451131.
11. Strzelecki M., Brylski P., Kim H. FPGA-Based System for Fast Image Segmentation Inspired by the Network of Synchronized Oscillators. Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science. Springer, Cham. 2017;10245:580-590. DOI: 10.1007/978-3-319-59063-9_52.
12. Adams R., Bischof L. Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1994;16(6):641-647. DOI: 10.1109/34.295913.
13. Fan M., Lee T.C.M. Variants of seeded region growing. Image Processing IET. 2015;9(6):478-485. DOI:10.1049/iet-ipr.2014.0490.
Рецензия
Для цитирования:
Цветков В.Ю. Параллельное выращивание областей полутоновых изображений на основе выборочного среднего значения яркости области по маршруту роста. Доклады БГУИР. 2021;19(6):83-91. https://doi.org/10.35596/1729-7648-2021-19-6-83-91
For citation:
Tsviatkou V.Yu. Parallel region growing of half-tone images based on selected average brightness of the area along the growth route. Doklady BGUIR. 2021;19(6):83-91. (In Russ.) https://doi.org/10.35596/1729-7648-2021-19-6-83-91