Preview

Doklady BGUIR

Advanced search

Gallium nitride heterostructure field-effect transistor with a heat-removal system based on a trench in the passivation layer filled by a high thermal conductivity material

https://doi.org/10.35596/1729-7648-2021-19-6-74-82

Abstract

The self-heating effect poses a main problem for high-power electronic and optoelectronic devices based on gallium nitride. A non-uniform distribution of the dissipated power and a rise of the average temperature inside the gallium nitride heterostructure field-effect transistor lead to the formation of a hot spot near the conducting channel and result in the degradation of the drain current, output power and device reliability. The purpose of this work is to develop the design of a gallium nitride heterostructure field-effect transistor with an effective heat-removal system and to study using numerical simulation the thermal phenomena specific to this device. The objects of the research are the device structures formed on sapphire, each of whom features both a graphene heat-eliminating element on its top surface and a trench in the passivation layer filled by a high thermal conductivity material. The subject of the research is the electrical and thermal characteristics of these device structures. The simulation results verify the effectiveness of the integration of the heat-removal system into the gallium nitride heterostructure field-effect transistor that can mitigate the self-heating effect and improve the device performance. The advantage of our concept is that the graphene heat-eliminating element is structurally connected with a heat sink and is designed for removing the heat immediately from the maximum temperature area through the trench in which a high thermal conductivity material is deposited. The results can be used by the electronics industry of the Republic of Belarus for developing the hardware components of gallium nitride power electronics.

About the Authors

V. S. Volcheck
Belarusian State University of Informatics and Radioelectronics
Belarus

Volcheck Vladislav S., Researcher at the R&D Laboratory 4.4 of R&D Department

220013, Minsk, P. Brovki str., 6



V. R. Stempitsky
Belarusian State University of Informatics and Radioelectronics
Belarus

Stempitsky Viktor R., PhD, Associate Professor, Head of R&D Department

Minsk



References

1. Yan Z., Liu G., Khan J.M., Balandin A.A. Graphene Quilts for Thermal Management of High-Power GaN Transistors. Nature Communications. 2012;3:827. DOI: 10.1038/ncomms1828.

2. Sun J., Fatima H., Koudymov A., Chitnis A., Hu X., Wang H.-M., Zhang J., Simin G., Yang J., Asif Khan M. Thermal Management of AlGaN-GaN HFETs on Sapphire Using Flip-Chip Bonding with Epoxy Underfill. IEEE Electron Device Letters. 2003;24(6):375-377. DOI: 10.1109/LED.2003.813362.

3. Felbinger J.G., Chandra M.V.S., Sun Y., Eastman L.F., Wasserbauer J., Faili F., Babic D., Francis D., Ejeckam F. Comparison of GaN HEMTs on Diamond and SiC Substrates. IEEE Electron Device Letters. 2007;28(11):948-950. DOI: 10.1149/2.0441712jss.

4. Hirama K., Taniyasu Y., Kasu M. AlGaN/GaN High-Electron Mobility Transistors with Low Thermal Resistance Grown on Single-Crystal Diamond (111) Substrates by Metalorganic Vapor-Phase Epitaxy. Applied Physics Letters. 2011;98(16):162112. DOI: 10.1063/1.3574531.

5. Pavlidis G., Kim S.H., Abid I., Zegaoui M., Medjdoub F., Graham S. The Effects of AlN and Copper Back Side Deposition on the Performance of Etched Back GaN/Si HEMTs. IEEE Electron Device Letters. 2019;40(7):1060-1063. DOI: 10.1109/LED.2019.2915984.

6. Grishakov K.S., Elesin V.F., Kargin N.I., Ryzhuk R.V., Minnebaev S.V. Effect of a Diamond Heat Spreader on the Characteristics of Gallium-Nitride-Based Transistors. Russian Microelectronics. 2016;45(1):41-53. DOI: 10.1134/S1063739716010054.

7. Волчёк В.С., Ловшенко И.Ю., Шандарович В.Т., Дао Динь Ха. Нитрид-галлиевый транзистор с высокой подвижностью электронов с эффективной системой теплоотвода на основе графена. Доклады БГУИР. 2020;18(3):72-80. DOI: 10.35596/1729-7648-2020-18-3-72-80. Volcheck V.S., Lovshenko I.Yu., Shandarovich V.T., Dao Dinh Ha. [Gallium Nitride High Electron Mobility Transistor with an Effective Graphene-Based Heat Removal System]. Doklady BGUIR = Doklady BGUIR. 2020;18(3):72-80. DOI: 10.35596/1729-7648-2020-18-3-72-80. (In Russ.)

8. Pant B.D., Tandon U.S. Etching of Silicon Nitride in CCl2F2, CHF3, SiF4, and SF6 Reactive Plasma: A Comparative Study. Plasma Chemistry and Plasma Processing. 1999;19(4):545-563. DOI: 10.1023/A:1021886511288.

9. Bland H.A., Thomas E.L.H., Klemencic G.M., Mandal S., Morgan D.J., Papageorgiou A., Jones T.G., Williams O.A. Superconducting Diamond on Silicon Nitride for Device Applications. Scientific Reports. 2019;9:2911. DOI: 10.1038/s41598-019-39707-z.

10. Farahmand M., Garetto C., Bellotti E., Brennan K.F., Goano M., Ghillino E., Ghione G., Albrecht J.D., Ruden P.P. Monte Carlo Simulation of Electron Transport in the III-Nitride Wurtzite Phase Materials System: Binaries and Ternaries. IEEE Transactions on Electron Devices. 2001;48(3):535-542. DOI: 10.1109/16.906448.

11. Feng T., Lindsay L., Ruan X. Four-Phonon Scattering Significantly Reduces Intrinsic Thermal Conductivity of Solids. Physical Review B. 2017;96:161201(R). DOI: 10.1103/PhysRevB.96.161201.

12. Chen K. Ultrahigh Thermal Conductivity in Isotope-Enriched Cubic Boron Nitride. Science. 2020;367(6477):555-559. DOI: 10.1126/science.aaz6149.

13. Hofmeister A.M. Thermal Diffusivity and Thermal Conductivity of Single-Crystal MgO and Al2O3 and Related Compounds as a Function of Temperature. Physics and Chemistry of Minerals. 2014;41:361-371. DOI: 10.1007/s00269-014-0655-3.

14. Dao Dinh Ha, Trung Tran Tuan, Volcheck V.S., Stempitsky V.R. Iron-Induced Acceptor Centers in the Gallium Nitride High Electron Mobility Transistor: Thermal Simulation and Analysis. 2019 International Conference on Advanced Technologies for Communications (ATC). 2019:308-312. DOI: 10.1109/ATC.2019.8924506.

15. Balandin A.A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nature Materials. 2011;10:569-581. DOI: 10.1038/NMAT3064.


Review

For citations:


Volcheck V.S., Stempitsky V.R. Gallium nitride heterostructure field-effect transistor with a heat-removal system based on a trench in the passivation layer filled by a high thermal conductivity material. Doklady BGUIR. 2021;19(6):74-82. (In Russ.) https://doi.org/10.35596/1729-7648-2021-19-6-74-82

Views: 573


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)