Low temperature multi-differential operational amplifier
https://doi.org/10.35596/1729-7648-2021-19-5-52-60
Abstract
A multi-differential operational amplifier, called OAmp3, designed for operation at temperatures up to minus 197 °С and developed on bipolar transistors and junction field-effect transistors of the master slice array МН2ХА030, is considered in the article. The circuitry features of the OAmp3 allow, due to the use of various negative feedback circuits, to implement a set of functions necessary for signal processing on a single amplifier: amplification (or current – voltage conversion), filtering, shift of the constant output voltage level. The performed measurements of OAmp3, connected as instrumentation amplifier circuit, showed that all manufactured products retain their performance in the temperature range from minus 150 °С to 20 °С, and individual samples – at minus 197 °С. It was found that the main reason for the loss of OAmp3 performance is an increase of the resistance of semiconductor resistors by almost 5.4 times at minus 197 °С compared to normal conditions and decrease in the junction field-effect transistor drain current. Together, these factors lead to decrease in the current consumption of the OAmp3 by almost 31 times at minus 180 °С compared to normal conditions. To reduce the temperature dependence of the current consumption and, thus, save the OAmp3 operability at low temperatures without changing the technological route of integrated circuits manufacturing, it is proposed to replace high-resistance semiconductor resistors with “pinch-resistors” formed on a small-signal p-junction field-effect transistor. The article presents the OAmp3 connection circuit in the form of an instrumental amplifier, the method and results of low-temperature measurements of experimental samples.
About the Authors
O. V. DvornikovBelarus
Dvornikov Oleg V., D.Sc., Associate Professor, Chief Research Scientist
Minsk
V. A. Tchekhovski
Belarus
Tchekhovski Vladimir A., Laboratory Manager of “Electronic Methods and Experiment Means” Laboratory of Research
Minsk
V. L. Dziatlau
Belarus
Dziatlau Valiantsin L., Junior Researcher at Electronic Methods and Experiment Means Laboratory of Research
Minsk
A. V. Kunts
Belarus
Kunts Aliaksei V., Postgraduate student at the Belarusian State University of Informatics and Radioelectronics, Junior Researcher at Electronic Methods and Experiment Means Laboratory of Research Institute for Nuclear Problems of Belarusian State University
220013, Minsk, P. Brovki str., 6
N. N. Prokopenko
Russian Federation
Prokopenko Nikolay N., D.Sc., Professor, Head of the Information Systems and Radioelectronics Department
Rostov-on-Don
References
1. Patterson R.L., Elbuluk M., Hammoud A. Assessment of electronics for cryogenic space exploration missions. Cryogenics. 2006;46(2–3):231-236.
2. Dvornikov O.V., Prokopenko N.N., Pahomov I.V., Ignashin A.A., Bugakova A.V. [Precision radiation hardened BIJFET operational amplifier for low temperature analog sensor interfaces]. Globalnaya yadernaya bezopasnost. 2017;1(22):36-45. (in Russ.)
3. Gulin A.I., Dvornikov O.V., Prokopenko N.N., Bugakova A.V. [Design of radiation-resistant BiJFET operational amplifiers for operation in analog sensor interfaces at low temperatures]. Datchiki I systemy. 2017;12:3-10. (in Russ.)
4. Dvornikov O.V., Tchekhovski V.А., Dziatlau V.L., Prokopenko N.N., Butyrlagin N.V. Design of LowTemperature DDOAs on the Elements of BiJFet Array Chip MH2XA030. Serbian Journal of Electrical Engineering. June 2018;15(2):233-247.
5. Dvornikov O.V., Tchekhovski V.А., Prokopenko N.N., Bugakova A. V., Maliy I. V. Cryogenic Operational Amplifier on Complementary JFETs. Proceedings of IEEE East-West Design & Test Symposium (EWDTS’2018), Kazan, Russia, September 14–17, 2018: 901-905.
6. Dvornikov O.V., Tchekhovski V.А., Prokopenko N.N., Bugakova A. V., Dziatlau V.L. Basic Parameters and Characteristics of the Op-Amp Based on the BiJFet Array Chip MH2XA030 Intended for the Design of Radiation-Hardened and Cryogenic Analog ICs. 2018 14th International Scientific technical Conference On Actual Problems Of Electronic Instrument Engineering (APEIE) – 44894. Proceedings, Novosibirsk, Russia, October 2–6, 2018: 200-207. DOI: 10.1109/APEIE.2018.8545562.
7. Dvornikov O.V., Tchekhovski V.А., Prokopenko N.N., Bugakova A.V., Dziatlau V.L. BiJFet Array Chip MH2XA030 – a Design Tool for Radiation-Hardened and Cryogenic Analog Integrated Circuits. 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), October 22–23, 2018, St. Petersburg, Russia. DOI: 10.1109/EExPolytech.2018.8564415.WOS:000454986000003.
8. Prokopenko N.N., Dvornikov O.V., Budyakov P.S. [Basic properties, parameters and basic circuits for switching on multi-differential operational amplifiers with a high-impedance node]. Electronnaya technica. Seriya 2. Poluprovodnikoviye pribory. 2014;2:51-62. (in Russ.)
9. Dvornikov O.V., Tchekhovski V.A., Dziatlau V.L., Prokopenko N.N. The main characteristics of SiGe HBTs at low temperatures. Vіsnik Nacіonal'nogo tekhnіchnogo unіversitetu Ukraїni «KPІ». Serіya Radіotekhnіka. Radіoaparatobuduvannya. 2016;66:87-96. (in Uk.)
10. Zajcev Y.V., Gromov V.S., Grigorash T.S. [Poluprovodnikovye termoelektricheskie preobrazovateli]. Moscow: Radio i svyaz'; 1985. (in Russ.)
Review
For citations:
Dvornikov O.V., Tchekhovski V.A., Dziatlau V.L., Kunts A.V., Prokopenko N.N. Low temperature multi-differential operational amplifier. Doklady BGUIR. 2021;19(5):52-60. (In Russ.) https://doi.org/10.35596/1729-7648-2021-19-5-52-60