Polarization diversity scheme for reach extension of WDM/TDM gigabit passive optical network up to 60 km using quantum dot semiconductor optical amplifiers
https://doi.org/10.35596/1729-7648-2021-19-4-80-84
Abstract
Gigabit passive optical networks (GPON) are the most advanced technology. The data transfer rate is 2.5 Gbps for downstream and 1.25 Gbps for upstreams. But this network architecture has a limited physical network length of 20 km. This is due to the high budgetary losses of the network. This restriction of access makes the network difficult to access for subscribers located far from the facilities of the telecom operator, and coverage of remote settlements is quite costly (cost of design work, fiber, laying of fiber-optic cable), thereby complicating the elimination of the digital divide between the city, the suburbs and the countryside. To solve this problem, it is proposed to use quantum dot semiconductor optical amplifiers (QD-SOA), which will expand the GPON reach up to 60 km, which is the limit for the logical length under the current protocols. Quantum dot semiconductor optical amplifiers are promising devices for optical communication technology, but for commercial use they have one disadvantage. They are polarization sensitive. In this paper the authors constructed a polarization diversity scheme to avoid polarization sensitivity of QD-SOAs.
About the Authors
A. D. TussupovKazakhstan
Axmet D. Tussupov, Doctoral Candidate
Nur-Sultan
A. T. Tokhmetov
Kazakhstan
Akilbek T. Tokhmetov, PhD, Associate Professor at the Department of Information Systems
Nur-Sultan
N. I. Listopad
Belarus
Listopad Nikolai Izmailovich, D.Sc., Professor, Head of the Department of Information Radiotechnologies
220013, Republic of Belarus, Minsk, P. Brovka str., 6
tel.: 375-17-239-23-04
References
1. Bonk R., Brenot R., Meuer C., Vallaitis T., Tussupov A., Rode J. C., Sygletos S., Vorreau P., Lelarge F., Duan G.H., Krimmel H.-G., Pfeiffer Th., Bimberg D., Freude W., Leuthold J. 1.3/ 1.5 µm QD-SOAs for WDM/TDM GPON with Extended Reach and Large Upstream/Downstream Dynamic Range. The Proc. of the Optical Fiber Communication Conference (OFC'09). San Diego, USA; OWQ1, accepted for publication.
2. Bhattacharya P., Bimberg D., Arakawa Y. Special Issue on Optoelectronic Devices Based on Quantum Dots. IEEE. Sep. 2007;95(9):1718-1722.
3. Vallaitis T., Koos C., Bonk R., Freude W., Laemmlin M., Meuer C., Bimberg D., Leuthold J.Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Opt. Express. 2008;16(1):170-178.
4. Brenot R., Lelarge F., Legouezigou O., Pommereau F., Poingt F., Legouezigou L., Derouin E., Drisse O., Rousseau B., Martin F., Duan G.H. Quantum Dots Semiconductor Optical Amplifier with a –3 dB Bandwidth of up to 120 nm in Semi-Cooled Operation. The Proc. of the Optical Fiber Communication Conference, 24–28 Febr. 2008. San Diego, CA, USA: paper OTuC1.
5. Akiyama T., Sugawara M., Arakawa Y. Quantum-Dot Semiconductor Optical Amplifiers. IEEE. 2007;95(9):1757-1766.
6. Bimberg D. Quantum dot based nanophotonics and nanoelectronics. Electr.Letters. 2008;44(iss. 3):168.
7. Wang H., Aw E.T., Xia M., Thompson M.G., Penty R.V., White I.H. Temperature Independent Optical Amplification in Uncooled Quantum Dot Optical Amplifiers. OFC, OSA Technical Digest (CD), 24–28 Febr. 2008. San Diego, CA, USA: paper OTuC2.
8. Bonk R., Meuer C., Vallaitis T., Sygletos S., Vorreau P., Ben-Ezra S., Tsadka S., Kovsh A.R., Krestnikov I.L., Laemmlin M., Bimberg D., Freude W., Leuthold J. Single and Multiple Channel Operation Dynamics of Linear Quantum-Dot Semiconductor Optical Amplifier. ECOC'08. Sept. 2008. Brüssel: paper Th1.C2.
Review
For citations:
Tussupov A.D., Tokhmetov A.T., Listopad N.I. Polarization diversity scheme for reach extension of WDM/TDM gigabit passive optical network up to 60 km using quantum dot semiconductor optical amplifiers. Doklady BGUIR. 2021;19(4):80-84. (In Russ.) https://doi.org/10.35596/1729-7648-2021-19-4-80-84