Preview

Doklady BGUIR

Advanced search

Processing and analysis of images of microstructure metals for determining the grain point

https://doi.org/10.35596/1729-7648-2012-19-4-70-79

Abstract

An algorithmic support for metallographic images preprocessing and analysis is presented. The software product implements metallographic methods for the grain size determination by comparison of rating scales, counting beans, calculation of grain boundaries intersections for equiaxed and elongated grains, measuring a chords length. Multiple digital images can be used as initial data. Pre-processing is used to remove noise, sharpen and improve contrast using Adaptive Contrast-Limiting Histogram Equalization (CLAHE). The next step is grain segmentation. A combination of distance transform and adaptive watershed binarization is used. Binary images filtration based on the operations of mathematical morphology is provided. Contour analysis is used to determine grain boundaries. The study’s results of the entire rating scales and on the real metallographic images are presented. High efficiency of an algorithmic support is confirmed by the experiments. The software implementation has the following main features: the ability to calibrate the actual grain size, automatic or manual image preprocessing, grain size analysis with saving the results as a report in jpg format. Batch processing provides the ability to download images for processing with the same type of algorithm.

About the Authors

R. P. Bohush
Polotsk State University
Belarus

Bohush Rykhard Petrovich, PhD, Associate professor, Head of Computer Systems and Networks Department

211440, Republic of Belarus, Vitebsk region, Novopolotsk, Blokhina str., 29
tel. +375-214-42-30-31



Y. R. Adamousky
Polotsk State University
Belarus

Yagor R. Adamousky, Postgraduate student of Computer Systems and Networks Department

Novopolotsk



S. F. Denisenak
Polotsk State University
Belarus

Siargey F. Denisenak, Head of Test and Research Center

Novopolotsk



References

1. Anisovich A.G. [Modern metallography – the basis of foundry material science]. Litiyo i Metallurgiya (Foundry production and metallurgy). 2019;(2):99-108. (In Russ.). DOI:10.21122/1683-6065-2019-2-99-108.

2. Сніснко А.N., Sachek О.A., Likhouzov S.G., Sobolev W.F., Wedeneev A.W. [Algorithm and software for processing of images of pearlitic steels microstructures]. Proceedings of the National Academy of Sciences of Belarus. Physical-Technical Series. 2010;3:14-21. (In Russ.)

3. Anisovich A.G., Rumyantseva I.N., Bisluk L.V. [Determination of steel grain grade by computer methods]. Litiyo i Metallurgiya (Foundry production and metallurgy). 2010;(3):100-104. (In Russ.). DOI: 10.21122/1683-6065-2010-3-100-104.

4. Sharybin S.I., Stolbov V.Yu., Gitman M.B., Baryshnikov M.P. [Developing of an intellectual system of complex microstructures analysis and classification on thin metal sections]. Neurocomputers. 2014;12:50-56.

5. Starodubov D.N. [Algoritmy predvaritel'noy obrabotki izobrazheniy mikrostruktur]. Algoritmy, metody i sistemy obrabotki dannykh. 2010;15:179-185. (In Russ.)

6. Sivkova T., Gubarev S., Kamenin I. [Avtomatizirovannyy analiz mikrostruktury materialov. Analiz izobrazheniy s nalichiyem defektov probopodgotovki]. Processing of International Conference on Computer Graphics and Vision "GraphiCon 2020". 2019;29:255-259. (In Russ.). DOI: 10.51130/graphicon-2020-1-15-26.

7. Chichko A.N., Sachek O.A., Ganzha V.A., Gashnikova O.P. [Algoritmy dlya avtomatizatsii obrabotki izobrazheniy makro- i mikrostruktury splavov]. Lit'ye i metallurgiya. 2008;1(45):79-84. (In Russ.)

8. Pizer S.M., Amburn E.P., Austin J.D., Cromartie R., Geselowitz A., Greer T., Romeny B.H., Zimmerma J.B., Zuiderveld K. Adaptive Histogram Equalization and Its Variations. Computer Vision, Graphics, and Image Processing. 1987;39(3):355-368.


Review

For citations:


Bohush R.P., Adamousky Y.R., Denisenak S.F. Processing and analysis of images of microstructure metals for determining the grain point. Doklady BGUIR. 2021;19(4):70-79. (In Russ.) https://doi.org/10.35596/1729-7648-2012-19-4-70-79

Views: 706


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7648 (Print)
ISSN 2708-0382 (Online)